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Abstract

This paper surveys various complexity results on differ-
ent forms of logic programming. The main focus is on de-
cidable forms of logic programming, in particular, proposi-
tional logic programming and datalog, but we also mention
general logic programming with function symbols. Next to
classical results on plain logic programming (pure Horn
clause programs), more recent results on various import-
ant extensions of logic programming are surveyed. These
include logic programming with different forms of nega-
tion, disjunctive logic programming, logic programming
with equality, and constraint logic programming. The com-
plexity of the unification problem is also addressed.

1. Introduction

Logic programming (LP) is a well-known declarat-
ive method of knowledge representation and programming
based on the idea that the language of first order logic is
well-suited for both representing data and describing de-
sired outputs [87]. LP was developed in the early 1970’s
based on work in automated theorem proving [68, 88], in
particular, on Robinson’sresolution principle[113]. A pure
logic program consists of a set of rules, also called defin-
ite Horn clauses. Each such rule has the formhead body,
whereheadis a logical atom andbodyis a conjunction of lo-
gical atoms. The logical semantics of such a rule is given by
the implicationbody) head(for a more precise account,
see Section 2). Note that the semantics of a pure logic pro-
gram is completely independent of the order in which its
clauses are given, and of the order of the single atoms in
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With the advent of the programming language Pro-
log [32], the paradigm of logic programming became soon
ready for practical use. Many applications in different areas
were and are successfully implemented in Prolog. Note that
Prolog is – in a sense – only an approximation to fully de-
clarative LP. In fact, the clause matching and backtracking
algorithms at the core of Prolog are sensitive to the ordering
of the clauses in a program and of the atoms in a rule body.

While Prolog has become a popular programming lan-
guage taught in many computer science curricula, research
focuses more on pure LP and on extensions thereof. Even
in some application areas such asknowledge representation
(a subfield of artificial intelligence) anddatabasesthere is
a predominant need for full declarativeness, and hence for
pure LP. In knowledge representation, declarative exten-
sions of pure logic programming, such as negation in rule
bodies and disjunction in rule heads, are used to formalize
common sense reasoning. In the database context, the query
languagedatalogwas designed and intensively studied (see
[26, 122]). This query language — based on function-free
pure LP — allows a user to formulate recursive queries that
cannot be expressed with standard query languages such as
SQL-2.

There are many interesting complexity results on LP.
These results are not limited to “classical” complexity the-
ory but also comprise expressiveness results in the sense of
descriptive complexity theory. For example, it was shown
that (a slight extension of) datalog cannot just express
some, but actuallyall polynomially computable queries on
ordered databases and only those. Thus datalog precisely
expressesor capturesthe complexity classP on ordered
databases. Similar results were obtained for many variants
and extensions of datalog. It turned out that all major vari-
ants of datalog can be characterized by suitable complexity
classes. As a consequence, complexity theory has become a
very important tool for comparing logic programming form-
alisms.

This paper surveys various complexity and expressive-
ness results on different forms of (purely declarative) LP.
The aim of the paper is twofold. First, a broad survey and
many pointers to the literature are given. Second, a few fun-
damental topics are explained in greater detail, in particular,
the basic results on plain LP (Section 3) and some funda-
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mental issues related to descriptive complexity (Section 6).
These two sections are written in a more tutorial style and
contain several proofs, while the other sections are written
in a rather succinct survey style.

Note that the present paper does not consist of an encyc-
lopedic listing of all published complexity results on logic
programming, but rather of a more or less subjective choice
of results. There are many interesting results which we can-
not mention for space reasons; such results may be found in
other surveys, such as, e.g., [24, 118]. For example, results
on abductive logic programming [52, 53], on intuitionistic
logic programming [22], and on Prolog [41].

The paper is organized as follows. In Section 2 a short
introduction to LP is given. We introduce datalog and dis-
tinguish between the notions ofdata complexity, program
complexity, andcombined complexityof classes of datalog
programs. Section 3 presents the main complexity results
on plain LP and datalog. Section 4 discusses the complex-
ity of LP with negated atoms in rule bodies. Section 5 deals
with disjunctive logic programming. Section 6 discusses
the expressive power of datalog and of various datalog ex-
tensions. Section 7 reports on the complexity of the unifica-
tion problem. Section 8 deals with LP extended by equality.
Finally, Section 9 deals with the complexity ofconstraint
logic programmingand with the expressive power of logic
programming with complex values.

2. Preliminaries

In this section, we introduce some basic concepts of lo-
gic programming. Due to space reasons, the presentation
is necessarily succinct; for a more detailed treatment, see
[94, 6, 9, 15].

We use letters p; q; : : : for predicate symbols,X;Y; Z; : : : for variables,f; g; h; : : : for function symbols,
anda; b; c; : : : for constants; a bold face version of a letter
denotes a list of symbols of the respective type.

2.1. Syntax of logic programs

Logic programs are formulated in a languageL of pre-
dicates and functions of nonnegative arity; 0-ary functions
are constants. A languageL is function-freeif it contains
no function symbols of arity greater than 0.

A termis inductively defined as follows: each variableX
and each constantc is a term, and iff is ann-ary function
symbols andt1; : : : tn are terms, thenf(t1; : : : ; tn) is a
term. A term is ground, if no variable occurs in it.

The Herbrand universeof L, denotedUL, is the set of
all ground terms which can be formed by the functions and
constants inL.

An atom is a formula p(t1; : : : ; tn), where p is apredicate symbol of arityn and eachti is a term. An atom

is ground, if all ti are ground. TheHerbrand baseof a lan-
guageL is the set of all ground atoms that can be formed
by using predicates fromL and terms fromUL.

A Horn clauseis a rule of the formA0  A1; : : : ; Am (m � 0) (1)

where eachAi is an atom. The parts on the left and on the
right of “ ” are theheadand thebodyof the rule, respect-
ively. A ruler of the formA0  , i.e., whose body is empty,
is called afact, and ifA0 is a ground atom, thenr is called
aground fact.

A logic programis a finite set of Horn clauses. A clause
or logic program is ground, if all terms in it are ground.

With each logic programP , we associate the languageL(P ) that consists of the predicates, functions and constants
occurring inP . If no constant occurs inP , we add some
constant toL(P ) for technical reasons. Unless stated other-
wise,L(P ) is the underlying language, and we use simpli-
fied notationUP andBP forUL(P ) andBL(P ), respectively.

A Herbrand interpretationof a logic programP is any
subsetI � BP of its Herbrand base. Intuitively, the atoms
in I are true, while all others are false. AHerbrand model
of P is a Herbrand interpretation ofP such that for each
rule A0  A1; : : : ; Am in P , this interpretation satisfies
the logical formula8x((A1 ^ � � � ^ Am) ) A0), wherex
is a list of the variables in the rule.

Propositional logic programs are logic programs in
which all predicates have arity 0, i.e., all atoms are propos-
itional ones.

Example 1 Here is an example of a propositional logic pro-
gram: shut down  overheatshut down  leakleak  valve closed ; pressure lossvalve closed  signal 1pressure loss  signal 2overheat  signal 3signal 1  signal 2  

Note that ifP is a propositional logic program thenBP
is a set of propositional atoms. Any interpretation ofP is a
subset of the propositional atoms.

2.2. Semantics of logic programs

The notions of a Herbrand interpretation and model can
be generalized for infinite sets of clauses in a natural way.
Let P be a set (finite or infinite) of ground clauses. Such
a setP defines an operatorTP : 2BP 7! 2BP , where2BP
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denotes the set of all Herbrand interpretations ofP , byTP (I) = fA0 2 BP j P contains a ruleA0  A1; : : : ; Am
such thatfA1; : : : ; Amg � Ig

This operator is called theimmediate consequence oper-
ator; intuitively, it yields all atoms that can be derived by
a single application of some rule inP given the atoms inI .

SinceTP is monotone, by the Knaster-Tarski Theorem it
has a least fixpoint, denoted byT1P , which is the limit of
the sequenceT 0P = ;, T i+1P = TP (T iP ), i � 0.

A ground atomA is aconsequenceof a setP of clauses ifA 2 T1P (we writeP j= A). Also, by definition, a negated
ground atom:A is aconsequenceof P , denotedP j= :A,
if A =2 T1P . Thesemanticsof a setP of ground clauses is
defined as the following setM(P ) consisting of atoms and
negated atoms:M(P ) = fA j P j= Ag [ f:A j P j= :Ag= T1P [ f:A j A 2 BP n T1P g:
Example 1(ctd) For programP above, we haveT 0P = ;T 1P = fsignal 1 ; signal 2gT 2P = T 1P [ fvalve closed ; pressure lossgT 3P = T 2P [ fleakgT 4P = T1P = T 3P [ fshut downg
Thus, the least fixpoint is reached in four steps; e.g.,P j=shut down andP j= :overheat .

It appears that for each setP of clauses,T1P coincides
with the uniqueleast Herbrand model ofP , where a modelM is smaller than a modelN , if M is a proper subset ofN
[123].

The semantics of arbitrary logic programs is now defined
as follows. Let thegroundingof a clauser in a languageL, denotedground(r;L), be the set of all clauses obtained
from r by all possible substitutions of elements ofUL for
the variables inr. For any logic programP , we defineground(P;L) = [r2P ground(r;L)

and we writeground(P ) for ground(P;L(P )). The
operator TP : 2BP 7! 2BP associated withP is
defined byTP = Tground(P ). Accordingly,M(P ) =M(ground(P )).
Example 2 LetP be the programp(a)  p(f(x))  p(x)

Then,UP = fa; f(a); f(f(a)); : : :g andground(P ) con-
tains the clausesp(a)  , p(f(a))  p(a), p(f(f(a)))  p(f(a)), . . . . The least fixpoint ofTP isT1P = T1ground(P ) = fp(fn(a)) j n � 0g:
Hence, e.g.P j= p(f(f(a))).

In practice, generatingground(P ) is often cumbersome,
since, even in case of function-free languages, it is in gen-
eral exponential in the size ofP . Moreover, it is not al-
ways necessary to computeM(P ) in order to determine
whetherP j= A for some particular atomA. For these reas-
ons, completely different strategies of deriving atoms from
a logic program have been developed. These strategies are
based on variants of Robinson’s famousResolution Prin-
ciple [113]. The major variant is SLD-resolution [88, 10].

Roughly, SLD-resolution can be described as follows. A
goal is a conjunction of atoms. A substitution is a function# that maps variablesv1; : : : ; vn to termst1; : : : ; tn. The
result of simultaneous replacement of variablesvi by termsti in an expressionE is denoted byE#. For a given goalG and a programP , SLD-resolution tries to find a substi-
tution# such thatG# logically follows fromP . The initial
goal is repeatedly transformed until the empty goal is ob-
tained. Each transformation step is based on the application
of the resolution rule to aselected atomBi from the goalB1; : : : ; Bm and a clauseA0  A1; : : : ; An fromP . SLD-
resolution tries tounifyBi with the headA0, i.e. to find a
substitution# such thatA0# = Bi#. Such a substitution#
is called aunifierof A0 andBi. If such a unifier# is found,
the goal is transformed into(B1; : : : ; Bi�1; A1; : : : ; An; Bi+1; : : : ; Bm)#:
For a more precise account, see [6, 94]; for resolution on
general clauses, see e.g. [89]. The complexity of unification
will be dealt with in Section 7.

2.3. Datalog

Logic programming is a suitable formalism for querying
relational databases. In this context, the LP-based query
languagedatalogand various extensions thereof have been
defined. Over traditional query languages such as relational
algebra or SQL-2, datalog has the advantage of being able
to expressrecursive queries.

In the context of LP, relational databases are identified
with sets of ground factsp(c1; : : : ; cn). Intuitively, all
ground facts with the same predicate symbolp represent
a data relation. The set of all predicate symbols occurring
in the database together with a possibly infinitedomainfor
the argument constants is theschemaof the database. With
each databaseD we associate a finite universeUD of con-
stants which encompasses at least all constants appearing in
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D, but possibly more. In the classical database context,UD
is often identified with the set of all constants appearing inD. But in the datalog context, a larger universeUD may be
suitable in case one wants to derive assertions about items
that do not explicitly occur in the database.

To understand how datalog works, let us state a clarify-
ing example.

Example 3 Consider a databaseD containing the ground
facts father (john ;mary)  father (joe ; kurt)  mother(mary ; joe)  mother (tina; kurt)  
The schema of this database is the set of rela-
tion symbols ffather ;motherg together with the do-
main STRING of all alphanumeric strings. With
this database we associate the finite universeUD =fjohn;mary ; joe; tina; kurt ; susang. Note thatsusandoes
not appear in the database but is included in the universeUD.

The following datalog program (or query)P computes
all ancestor relationships relative to this database:parent(X;Y )  father (X;Y )parent(X;Y )  mother(X;Y )ancestor (X;Y )  parent(X;Y )ancestor (X;Y )  parent(X;Z); ancestor(Z; Y )person(X)  

In the programP , father andmother are theinput pre-
dicates, also calleddatabase predicates. Their interpreta-
tion is fixed by the given input databaseD. The predicatesancestor andperson areoutput predicates, and the predic-
ateparent is anauxiliary predicate. Intuitively, the output
predicates are those which are computed as the visible result
of the query, while the auxiliary predicates are introduced
for representing some intermediate results, which are not to
be considered part of the final result.

The datalog programP on input databaseD computes
a result databaseR with the schemafancestor ; persong
containing among others the following ground facts:ancestor(mary ; joe), ancestor(john ; joe), person(john),person(susan). The last fact is inR becausesusan
is included as a constant inUD. However, the factperson(harry) is not inR, becauseharry is not a constant
in the finite universeUD of the databaseD.

Formally, adatabase schemaD consists of a finite setRels(D) of relation names with associated arities and a
(possibly infinite) domainDom(D). For each database
schemaD, we denote byHB(D) the Herbrand base cor-
responding to the function-free language whose predic-
ate symbols areRels(D) and whose constant symbols areDom(D).

A database(also,database instance) D over a schemaD is given by a finite subset of the Herbrand baseD �HB(D) together with an associated finite universeUD such
that C � UD � Dom(D), whereC denotes the set
of all constants actually appearing inD. By abuse of
notation, we also writeD instead ofhD;UDi. We de-
note byDjp the extension of the relationp 2 Rels(D)
in D. Moreover, INST (D) denotes the set of all data-
bases overD. A datalog queryor a datalog programis a
function-free logic programP with three associated data-
base schemas: the input schemaDin , the output schemaDout and the complete schemaD, such that the following
is satisfied:Dom(Din ) = Dom(Dout) = Dom(D) andRels(Din ) � Rels(D) andRels(Dout ) � Rels(D) andRels(Din ) \ Rels(Dout ) = ;. Moreover, each predicate
symbol appearing inP is contained inRels(D) and no pre-
dicate symbol fromDin appears in a rule head ofP (the
latter means that the input database is never modified by a
datalog program).

The formal semantics of a datalog programP over
the input schemaDin , output schemaDout , and complete
schemaD is given by a partial mapping from instances ofDin to instances ofDout over the same universe. A result
instance ofDout is regarded as the result of the query. More
formally,MP : INST (Din ) 7! INST (Dout ) is defined for
all instancesDin 2 INST (Din ) such that all constants oc-
curring inP appear inUDin , and maps every suchDin to
the databaseDout = MP (Din ) such thatUDout = UDin
and, for every relationp 2 Rels(Dout ),Dout jp = fc j p(c) 2M(ground(P [Din ;L(P;Din )))g;
whereM and ground are defined as in Section 2.2 andL(P;Din ) is the language ofP [Din extended by all con-
stants in the universeUDin . For all ground atomsA 2HB(Dout), we write P [ Din j= A if A 2 MP (Din )
and writeP [Din j= :A if A =2MP (Din ).

The semantics of datalog is thusinherited from the se-
mantics of LP. In a similar way, the semantics of various
extensions of datalog is inherited from the corresponding
extensions of logic programming.

There are three interesting complexity issues connected
to plain datalog and its various extensions.� The data complexity is the complexity of checking

whetherDin [ P j= A for a fixeddatalog programP
andvariableinput databasesDin and ground atomsA.� Theprogram complexity is the complexity of check-
ing whetherDin [ P j= A for variable datalog pro-
gramsP and ground atomsA over afixed input data-
baseDin . We recall that ifDin is fixed, then the set of
constants that may appear inP andA is fixed too.
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� Thecombined complexityis the complexity of check-
ing whetherDin [ P j= A for variabledatalog pro-
gramsP , ground atomsA, and input databaseDin .

Note that for plain datalog, as well as for all other ver-
sions of datalog considered in this paper, the combined
complexity is equivalent to the program complexity w.r.t.
polynomial-time reductions. This is due to the fact that
w.r.t. the derivation of ground atoms, each pairhDin ; P i
can be easily reduced to the pairhD;; P �i, whereD; is
the empty database instance associated with a universe of
two constantsc1 andc2, andP � is obtained fromP [ Din
by straightforward encoding of the universeUDin usingn-
tuples overfc1; c2g, wheren = djUDin je. For this reason,
we mostly disregard the combined complexity in the mater-
ial concerning datalog. We remark, however, that due to a
fixed universe, program complexity may allow for slightly
sharper upper bounds than the combined complexity (e.g.,
DETIME vsDEXPTIME ).

As for LP in general, a generalization of the combined
complexity may be regarded as the main complexity meas-
ure. Below, when we speak about the complexity of a frag-
ment of LP, we mean the following kind of complexity:� Thecomplexity (for LP) is the complexity of checking

whetherP j= A for variable both programsP and
ground atomsA.

3. Complexity of plain logic programming

In this section we survey some basic results on the com-
plexity of plain LP. This section is written in a slightly more
tutorial style than the following sections in order to help
both readers not familiar with LP and readers not too famil-
iar with complexity theory to grasp some key issues relating
complexity theory and logic programming.

3.1. Simulation of Deterministic Turing machines
by logic programs

Formally, adeterministic Turing machine (DTM)is a
quintupleT = h�; S; �; s0; S+i, where� is a finite al-
phabet of tape symbols, containing also the special blank
symbol#, S is a finite set of states,� : (S � �) �!� � f�1; 0; 1g � S is the transition function,s0 2 S is
the initial state, andS+ � S is the set of accepting states;
without loss of generality we assume that every accepting
state is a terminal state, i.e., wheneverT enters an accept-
ing state, it remains in this state and stops running.

A DTM has a semi-infinite worktape whose cellsc0; c1; c2 : : : are on inputI initialized as follows. Cellsc0; : : : ; cjIj�1 contain the symbols of stringI , wherejI j is
the length ofI , and all other cells contain#.

The transition function� is represented by a table
whose rows are quintupleshs; �; �0; d; s0i, whose meaning
is stated as follows as an if-then-rule:

if at some instant� of timeT is in states, the workhead
is positioned at cellc�, and cellc� holds symbol�
then at instant� + 1, T is in states0, the cellc� holds
symbol�0, and the workhead is positioned atc� + d.

Here, it is assumed without loss of generality thatd 6=�1 whenever� = 0, i.e., the workhead never moves left ofc0.
It is possible to describe the complete evolution of a

DTM T on input stringI from its initial configurationat
time instant0 to the configuration at instantN by a propos-
itional logic programLP (T; I;N). For achieving this, we
define various classes of propositional atoms:CC�[�; �] for 0 � � � N , 0 � � � N , and� 2 �.

Intuitive meaning: At instant� of the computation, cell� contains symbol�.WP [�; �] for 0 � � � N , and0 � � � N . Intuitive
meaning: At instant� the workhead is positioned at
cell number�.STs[� ] for 0 � � � N , ands 2 S. Intuitive meaning: At
instant� the machine is in states.ACCEPT : the machine has reached an accepting state.

Let us denote byIi the i-th symbol of stringI =I0 � � � IjIj�1. The initial configuration ofT on inputI is re-
flected by the followinginitialization factsin LP (T; I;N):CC�[0; �]  for 0 � � < jI j, whereI� = �CC#[0; �]  for jI j � � � NWP [0; 0]  STs0 [0]  

Each entryhs; �; �0; d; s0i of the transition table� is
translated into the following propositional Horn clauses,
which we call thetransition rules. The clauses are asserted
for each value of� and� such that0 � � < N , 0 � � < N ,
and0 � � + d � N .CC�0 [� + 1; �]  STs[� ]; CC�[�; �];WP [�; �]WP [� + 1; � + d]  STs[� ]; CC�[�; �];WP [�; �]STs0 [� + 1]  STs[� ]; CC�[�; �];WP [�; �]

These clauses almost perfectly describe what is happen-
ing during a state transition from instant� to instant� + 1.
However, it should not be forgotten that those tape cells
which are not changed during the transition keep there old
values at instant� + 1. This must be reflected by what
we term inertia rules. These rules are asserted for each
time instant� and tape cellsc�; c0�, where0 � � < N ,0 � � < �0 � N , and have the following form:
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CC�[� + 1; �]  CC�[�; �];WP [�; �0]CC�[� + 1; �0]  CC�[�; �0];WP [�; �]
Finally, a group of clauses termedaccept rulesderives

the propositional atomACCEPT , whenever an accepting
configuration is reached.ACCEPT  STs[� ] for 0 � � � N , s 2 S+

By construction, the least fixpointT1LP of the logic pro-
gramLP = LP (T; I;N) is reached atTN+2LP , and the
ground atoms added toT �LP , 1 � � � N + 1, i.e., those
in T �LP n T ��1LP , describe the configuration ofT on inputI
at time instant� � 1. The fixpointT1LP containsACCEPT
if and only if an accepting configuration has been reached
by T in � N computation steps. We thus have:

Lemma 3.1 LP (T; I;N) j= ACCEPT if and only if ma-
chineT accepts the input stringI withinN steps.

3.2. Complexity of propositional LP

The simulation of a DTM by a propositional logic pro-
gram, as described in Section 3.1 is almost all we need in or-
der to determine the complexity of propositional LP, i.e., the
complexity of deciding whetherP j= A holds for a given
logic programP and ground atomA.

Theorem 3.2 (implicit in [80, 127, 76]) Propositional LP
isP-complete under logspace reductions.

Proof. a) Membership. It obvious that the least fixpointT1P of the operatorTP , given programP , can be computed
in polynomial time: the number of iterations (i.e. applic-
ations ofTP ) is bounded by the number of rules plus one.
Each iteration step is clearly feasible in polynomial time.

b) Hardness. LetA be a language inP. ThusA is de-
cidable inq(n) steps by a DTMT for some polynomialq.
Transform each instanceI of A to the corresponding logic
programLP (T; I; q(jI j)) as described in Section 3.1. By
Lemma 3.1,LP (T; I; q(jI j)) j= ACCEPT if and only ifT has reached an accepting state withinq(n) steps. The
translation fromI to LP (T; I; q(jI j)) is very simple and
is clearly feasible in logarithmic space, since all rules ofLP (T; I; q(jI j)) can be generated independently of each
other and each has size logarithmic in the input; note that
the numbers� and� haveO(log jI j) bits, while all other
syntactic constituents of a rule have constant size. We have
thus shown that every languageA inP is logspace reducible
to propositional LP. Hence, logic programming isP-hard
under logspace reductions.

Obviously, this theorem can be proved by simpler re-
ductions from otherP-complete problems, e.g. from the
monotone circuit value problem; however, our proof from

first principles unveils the computational nature of LP and
provides a basic framework form which further results will
be derived by slight adaptations in the sequel.

Notice that in a standard programming environment, pro-
positional LP is feasible in linear time by using appropriate
data structures, as follows from results about deciding Horn
satisfiability [43]. This does not mean that all problems inP
are solvable in linear time; first, the model of computation
used in [43] is the RAM machine, and second polynomial-
time reductions may in general polynomially increase the
input.

Theorem 3.2 holds under stronger reductions. In fact,
it holds under the requirement that the logspace reduction
is also a polylogtime reduction (PLT). Briefly, a mapf :� 7! �0 from problem� to problem�0 is a PLT-reduction,
if there are polylogtime deterministic direct access Turing
machines (DDATMs)N , M such that for allw, N(w) =jf(w)j and for allw andn, M(w; n) = Bit(n; f(w)), i.e.,
the n-th bit of f(w) (see e.g. [129] for details). (Recall
that a DDATM has a separate input tape whose cells can be
indirectly accessed by use of an index register tape.) Since
the above encoding of a DTM into LP is highly regular, it is
easily seen that it is a PLT reduction.

Syntactical restrictions on programs lead to complete-
ness for classes insideP. LetLP (k) denote logic restricted
to programs where each clause has at mostk atoms in the
body. Then, by results in [127, 77], one easily obtains

Theorem 3.3 LP (1) is NL-complete under logspace re-
ductions.

Notice that the above DTM encoding can be easily mod-
ified to programs inLP (2). Hence,LP (2) isP-complete.

Further restrictions yield problems complete forL (of
course, under reductions stronger than logspace reductions),
which we omit here.

3.3. Complexity of datalog

Let us now turn to datalog, and let us first consider data
complexity. GroundingP on an input databaseD yields
polynomially many clauses in the size ofD; hence, the
complexity of propositional LP is an upper bound for the
data complexity. This is analogous for the variants of data-
log we shall consider subsequently. The complexity of pro-
positional LP is also a lower bound. Thus,

Theorem 3.4 (implicit in [127, 76]) Datalog is data com-
plete inP.

In fact, this result follows from the proof of Theorem 6.2.
An alternative proof ofP-hardness can be given by writing
a simple datalogmeta-interpreterfor propositionalLP (k),
wherek is a constant.
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Represent rulesA0  A1; : : : ; Ai, 0 � i � k, by tupleshA0; : : : ; Aii in ani+1-ary relationRi on the propositional
atoms. Then, a programP in LP (k) stored this way in a
databaseD(P ) can be evaluated by a fixed datalog programPMI (k) which contains for each relationRi, 0 � i � k, a
rule T (x0) T (x1); : : : ; T (xi); Ri(x0; : : : ; xi):
HereT (x) intuitively means that atomx is true. Then,P j=A precisely ifPMI [ P (D) j= T (A). P-hardness of the
data complexity of datalog is immediate from Theorem 3.2.

The program complexity is exponentially higher.

Theorem 3.5 (implicit in [127, 76]) Datalog is program
complete inDEXPTIME .

Proof. (Sketch) a)Membership. GroundingP on D
leads to a propositional programP 0 whose size is exponen-
tial in the size of the fixed input databaseD. Hence, by
Theorem 3.2, the program complexity is inDEXPTIME .

b) Hardness. In order to proveDEXPTIME -hardness,
we show that if a DTMT halts in less thanN = 2nk steps
on a given inputI wherejI j = n thenT can be simulated
by a datalog program over a fixed input databaseD. In
fact, we useD;, i.e. the empty database with the universeU = f0; 1g.

We employ the scheme of the DTM encoding into LP
from above, but use the predicatesCC�(x; y), WP (x; y),STs(x) instead of the propositional lettersCC�[�; �],WP [�; �], STs[� ], respectively. The time points� and tape
positions� from 0 to 2m � 1, m = nk, are represented bym-ary tuples overU , on which the functions�+1 and�+d
are realized by means of the successorSuccm from a linear
order�m onUm.

For an inductive definition, supposeSucci(x;y),First i(x), andLast i(x) tell the successor, the first, and the
last element from a linear order�i onU i, wherex andy
have arityi. Then, use rulesSucci+1(z;x; z;y)  Succi(x;y)Succi+1(z;x; z0;y)  Succ1(z; z0);Last i(x);First i(y)First i+1(z;x)  First1(z);First i(x)Last i+1(z;x)  Last1(z);Last i(x)
HereSucc1(x; y), First1(x), andLast1(x) on U1 = U
must be provided. For our reduction, we use the usual or-
dering0 �1 1 and provide those relations by the ground
factsSucc1(0; 1), First1(0), andLast1(1).

The initialization factsCC�[0; �] are readily translated
into the datalog rulesCC�(x; t)  Firstm(x), wheret
represents the position�, and similarly the factsWP [0; 0]
andSTs0 [0]. The remaining initialization factsCC#[0; �],jI j � � � N , are translated to the rule

CC#(x;y)  Firstm(x);�m(t;y)
wheret represents the numberjI j; �m is easily defined
from Succm by two clauses.

The transition and inertia rules are easily translated into
datalog rules. For realizing� + 1 resp.� + d, use in the
body atomsSuccm(x;x0). For example, the clauseCC�0 [� + 1; �] STs[� ]; CC�[�; �];WP [�; �]
is translated intoCC�0(x0;y) STs(x); CC�(x;y);WP (x;y); Succm(x;x0).
The translation of the accept rules is straightforward.

For the resulting datalog programP 0, it holds thatP 0 [D; j= ACCEPT if and only if T accepts inputI in �N steps. It is easy to see thatP 0 can be constructed in
logarithmic workspace fromT andI . Hence, datalog has
DEXPTIME -hard program complexity.

Note that straightforward simplifications in the construc-
tion are possible, which we omit here, as part of it will be
reused below.

Instead of using a generic reduction, the hardness part of
this theorem can also be obtained by applying complexity
upgrading techniques [108, 14]. We briefly outline this in
the rest of this section.

This technique utilizes a conversion lemma [14] of the
form “If � X-reduces to�0, then s(�) Y -reduces tos(�0);” here s(�) is the succinct variant of�, where the
instancesI of � are given by a Boolean circuitCI which
computes the bits ofI (see [14] for details). The strongest
form of the conversion lemma appears in [129], whereX
is PLT andY is monotone projection reducibility [77].
The conversion lemma gives rise to an upgrading theorem
[14, 54, 66, 129], stated here in the strongest form of [129]:

Theorem 3.6 Let C1 and C2 be complexity classes s.t.long(C1) �C2. If � is hard forC2 under PLT-reductions,
thens(�) is hard forC1 under projection reductions.

Here long(C1) = flong(A) j A 2 C1g, wherelong(A) = Sn21Af0; 1gn.
From the observations in Section 3.2, we then obtain

that s(LP (2)) is DEXPTIME -hard under projection re-
ductions, where each programP is stored in the databaseD(P ), which is represented by a binary string in the stand-
ard way.s(LP (2)) can be reduced to evaluating a datalog pro-
gramP � over a fixed database as follows. From a succinct
instance ofLP (2), i.e., a Boolean circuitCI for I = D(P ),
Boolean circuitsCi for computingRi, 0 � i � 2 can be
constructed which use negation merely on input gates.

Each such circuitCi(x) can be simulated by straightfor-
ward datalog rules. E.g., an̂-gategi with input from gates

7
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gj andgk is described by a rulegi(x)  gj(x); gk(x), and
an_-gategi is described by the rulesgi(x)  gj(x) andgi(x) gk(x).

The desired programP � comprises the rules for the
Boolean circuitsCi and the rules of the meta-interpreterPMI (k), which are adapted for a binary encoding of the
domainUD(P ) of the databaseD(P ) by using binary tuples
of arity dlog jUD(P )je. This construction is feasible in log-
space, from whichDEXPTIME -hard program complexity
of datalog follows. See [54, 55, 66] for details.

3.4. Complexity of LP with functions

Let us see what happens if we allow function symbols in
logic programs. In this case, entailment of an atom is no
longer decidable. To prove it, we can, for example, reduce
Hilbert’s Tenth Problem to the query answering in full LP.
Natural numbers can be represented using the constant0
and the successor functions. Addition and multiplication
are expressed by the following simple logic program:x+ 0 = x  x+ s(y) = s(z)  x+ y = zx� 0 = 0  x� s(y) = z  x� y = u; u+ x = z

Now, undecidability of full LP follows from undecidab-
ility for diophantine equations [103]. Moreover, this reduc-
tion shows r.e.-completeness of LP.

Theorem 3.7 ([5, 121])Full LP is r.e.-complete.

Of course, this theorem may as well be proved by a simple
encoding of Turing machines similar as in the proof of The-
orem 3.5 (use termsfn(c), n � 0, for representing cell
positions and time instants). Theorem 3.7 was generalized
in [130] for more expressive S-semantics and C-semantics
[59].

A natural decidable fragment of LP with functions are
non-recursive programs, in which intuitively no predicate
depends syntactically on itself (see Section 4.1 for a defin-
ition). Their complexity is characterized by the following
theorem.

Theorem 3.8 ([37]) Non-recursive LP isNEXPTIME -
complete.

The membership is established by applying SLD-
resolution with constraints. The size of the derivation turns
out to be exponential.NEXPTIME -hardness is proved by
reduction from the tiling problem for the square2n � 2n.

Some other fragments of LP with function symbols are
known to be decidable. For example, the following result
was established in [120], by using a simulation of alternat-
ing Turing machines by logic programs and vice versa.

Theorem 3.9 ([120]) LP with function symbols is
PSPACE-complete, if each rule is restricted as follows: The
body contains only one atom, the size of the head is greater
than or equal to that of the body, and the number of occur-
rences of any variable in the body is less than or equal to
the number of its occurrences in the head.

For further investigations of decidability of subclasses
of logic programs, see [40]. See also [20, 60] for further
material on recursion-theoretic issues related to LP.

4. Complexity of LP with negation

4.1. Stratified negation

A literal L is either an atomA (called positive) or a
negated atom:A (called negative). Literals A and :A
are complementary; for any literalL, we denote by::L
its complementary literal, and for any setLit of literals,::Lit = f::L j L 2 Litg.

A normal clauseis a rule of the formA L1; : : : ; Lm (m � 0) (2)

whereA is an atom and eachLi is a literal. Anormal logic
programis a finite set of normal clauses.

The semantics of normal logic programs is not straight-
forward, and numerous proposals exist (cf. [9]). However,
there is general consensus for stratified normal logic pro-
grams.

A normal logic programP is stratified[8], if there is an
assignmentstr(�) of integers 0,1,. . . to the predicatesp inP , such that for each clauser in P the following holds: Ifp
is the predicate in the head ofr andq the predicate in anLi
from the body, thenstr(p) � str(q) if Li is positive, andstr(p) > str(q) if Li is negative.

The reductof a normal logic programP by a Herbrand
interpretation I [64], denoted P I , is obtained fromground(P ) as follows: first remove every clauser with a
negative literalL in the body such that::L 2 I , and then
remove all negative literals from the remaining rules. No-
tice thatP I is a set of ground Horn clauses.

The semantics of a stratified normal programP is then
defined as follows. Take an arbitrary stratificationstr. De-
note byP=k the set of rulesr such thatstr(p) = k, wherep is the head predicate ofr. Define a sequence of Herbrand
interpretations:M0 = ;, andMk+1 is the least Herbrand
model ofPMk=k [Mk for k � 0. Finally, letMstr(P ) = SiMi [ f:A j A =2 SiMig:
The semanticsMstr does not depend on the stratificationstr [8]. Note that in the propositional caseMstr(P ) is
polynomially computable.

8
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Theorem 4.1 (implicit in [8]) Stratified propositional LP
is P-complete. Stratified datalog is data complete inP and
program complete inDEXPTIME .

For full LP, stratified negation yields the arithmetical
hierarchy.

Theorem 4.2 ([7]) Full LP with n levels of stratified nega-
tion is�0n+1-complete.

See [21, 107] for further complexity results on stratifica-
tion.

A particular case of stratified negation are non-recursive
logic programs. A stratified program isnon-recursive, if it
has a stratification such that each predicatep occurs in its
defining stratumP=str(p) only in the heads of rules. E.g.,
the logic program produced by the DTM encoding from
above is non-recursive.

Theorem 4.3 (implicit [77, 127]) Non-recursive proposi-
tional LP isP-complete. Non-recursive datalog has logtime
uniformAC0 data complexity[77] and is program complete
in PSPACE.

4.2. Well-founded negation

Roughly, the well-founded semantics [125] (WFS) as-
signs value “unknown” to atomA, if it is defined by unstrat-
ified negation. Briefly, WFS can be defined as follows [16].
Let FP (I) be the operatorFP (I) = T1P I . SinceFP (I)
is anti-monotone,F 2P (I) is monotone, and thus has a least
and a greatest fixpoint, denoted byF 2P "1 andF 2P #1, re-
spectively. Then, the meaning of a programP under WFS,Mwfs(P ), isMwfs(P ) = F 2P"1 [ f:A j A =2 F 2P#1g:
Notice that on stratified programs, WFS and stratified se-
mantics coincide.

Theorem 4.4 (implicit in [124, 125]) LP under WFS isP-
complete. Datalog under WFS is data complete inP and
program complete inDEXPTIME .

Whether decidingP j=wfs A can be done in linear-time
is open [19]. For full LP, the following is known.

Theorem 4.5 ([119]) Full LP under WFS is�11-complete.

4.3. LP under the stable model semantics

An interpretationI of a normal logic programP is a
stable modelof P [64], if I = T1P I , i.e., I is the least
Herbrand model ofP I .

In general, a normal logic programP may have zero,
one, or multiple stable models.

Example 4 Let P be the following program:sleep  :workwork  :sleep
ThenM1 = fsleepg andM2 = fworkg are the stable
models ofP .

Denote bySM(P ) the set of stable models ofP . The
meaning ofP under thestable model semantics(SMS) isMst(P ) = \M2SM(P )(M [ ::(BP nM)):
Note that every stratifiedP has a unique stable model, and
its stratified and stable semantics coincide. Unstratified
rules increase complexity.

Theorem 4.6 ([99]) Given a propositional logic programP , deciding whetherSM(P ) 6= ; is NP-complete.

Proof. a) Membership. Clearly,P I is polynomial time
computable fromP andI . Hence, a stable modelM of P
can be guessed and checked in polynomial time.

b) Hardness. Modify the DTM encoding in Section 3
for a nondeterministic Turing machine (NTM)T as fol-
lows. For each states and symbol�, introduce atomsBs;�;1[� ],. . . ,Bs;�;k[� ] for all 1 � � < N and transitionshs; �; �0i; di; sii, 1 � i � k. AddBs;�;i[� ] in the bodies of
the transition rules forhs; �; �0i; di; sii and the ruleBs;�;i[� ]  :Bs;�;1[� ]; : : : ;:Bs;�;i�1[� ];:Bs;�;i+1[� ]; : : : ;:Bs;�;k[� ].
Intuitively, these rules nondeterministically select precisely
one of the possible transitions fors; � at time instant� ,
whose transition rules are enabled viaBs;�;i[� ]. Finally,
add a rule ACCEPT  :ACCEPT :
It ensuresACCEPT is true in every stable model. The
stable modelsM of the resulting program correspond to the
accepting runs ofT .

As an easy consequence,

Theorem 4.7 ([99, 119]; cf. also [85])LP under SMS is
co-NP-complete. Datalog under SMS is data complete in
co-NP and program complete inco-NEXPTIME .

For full LP, SMS has the same complexity as WFS.

Theorem 4.8 ([119, 98])Full LP under SMS is�11-
complete.

Further results on stable models of recursive (rather than
only finite) logic programs can be found in [97].
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4.4. Inflationary and noninflationary semantics

The inflationary semantics (INFS) [3, 2] is inspired by
inflationary fixpoint logic [71]. In place ofT1P , it uses the
limit eT1P of the sequenceeT 0P = ;, eT i+1P = bTP ( eT iP ), i � 0,
where eTP is the inflationary operatoreT (I) = I [ TP I (I).
Clearly, eT1P is computable in polynomial time for a propos-
itional programP . Moreover,eT1P coincides withT1P for
Horn clause programsP . Therefore, by the above results

Theorem 4.9 ([3]; implicit in [71]) LP under INFS isP-
complete. Datalog under INFS is data complete inP and
program complete inDEXPTIME .

The noninflationary semantics (NINFS) [3], in the ver-
sion of [4, page 373], uses in place ofT1P the limit bT1P
of the sequencebT 0P = ;, bT i+1P = bTP ( bT iP ), i � 0, wherebTP (I) = TP I (I), if it exists; otherwise,bT1P is undefined.
Similar equivalent algebraic query languages have been de-
scribed earlier in [28, 127]. In particular, datalog under NI-
FNS is equivalent to partial fixpoint logic [3, 2].

As easily seen,T1P is for a propositional programP
computable in polynomial space; this bound is tight.

Theorem 4.10 ([3, 2]) LP under NINFS is PSPACE-
complete. Datalog under NINFS is data complete in
PSPACEand program complete inEXPSPACE.

4.5. Further semantics of negation

A number of interesting further semantics, e.g. partial
(maximal) stable models, regular models, perfect models, 2-
and 3-valued completion semantics, fixpoint models, must
remain undiscussed here; see e.g. [119, 115, 85] for more
details and complexity results.

5. Disjunctive logic programming

Informally, disjunctive logic programming (DLP) ex-
tends LP by adding disjunction in the rule heads, in order
to allow more suitable knowledge representation and to in-
crease expressiveness. E.g.,male(X) _ female(X) person(X)
naturally represents that any person is either male or female.

A disjunctive (general) logic programis a set of clausesA1 _ � � � _ Ak  L1; : : : ; Lm (k � 1;m � 0): (3)

For a background, see [95] and the more recent [105].
The semantics of:-free disjunctive logic programs is based
onminimalHerbrand models, as the least (unique minimal)
model does not exist in general.

Example 5 P = fp _ q  g has the two minimal modelsM1 = fpg andM2 = fqg.
Denote byMM(P ) the set of minimal Herbrand mod-

els of P . The Generalized Closed World Assumption
[104] (GCWA) for negation-freeP amounts to the mean-
ingMGCWA(P ) = fL j MM(P ) j= Lg.
Example 6 Consider the following programP 0, describing
the behavior of a reviewer while reviewing a paper:good _ bad  paperhappy  goodangry  badsmoke  happysmoke  angrypaper  

The following models ofP 0 are minimal:M1 = fpaper ; good ; happy ; smokeg andM2 = fpaper ; bad ; angry ; smokeg:
Under GCWA, we haveP j=GCWA smoke , whileP 6j=GCWA good andP 6j=GCWA :good .

Theorem 5.1 ([48]) (i) DecidingP j=GCWA A is co-NP-
complete, and(ii) deciding P j=GCWA :A is �p2-
complete.

Proof. It is easy to see that for an atomA, it holdsP j=GCWA A if and only if P j=PC A, wherej=PC is
classical logical consequence. Hence, by the well-known
NP-completeness of SAT, part(i) is obvious.

Let us thus consider part(ii).
a) Membership. It holdsP 6j=GCWA :A, if and only

if there exists anM 2 MM(P ) such thatM 6j= :A, i.e.,A 2 M . Clearly, a guess forM can be verified with an
oracle forNP in polynomial time; from this, membership
of the problem in�p2 follows.

b) Hardness. (Sketch) We show�p2-hardness by an en-
coding of alternating Turing machines (ATM) [30]. Recall
that an ATMT has its set of states partitioned into exist-
ential (9) and universal (8) states. If the machine reaches
an9-state (resp.8-state)s in a run, then the input is accep-
ted if the computation continued in some (resp. all) of the
possible successor configurations is accepting.

The polynomial-time bounded ATMs which start in a8-
states0 and have one alternation, i.e., precisely one trans-
ition from a8-state to an9-state in each run (and no reverse
transition), solve precisely the problems in�p2 [30].

By adapting the construction in the proof of The-
orem 4.6, we show how any such machineT on input I
can be simulated by a disjunctive logic programP un-
der GCWA. W.l.o.g., we assume that each run ofT is
polynomial-time bounded [13].

10



www.manaraa.com

We start from the clauses constructed for the NTMT on
inputI in the proof of Theorem 4.6, from which we drop the
clauseACCEPT  :ACCEPT and replace the clausesBs;�;i[� ]  :Bs;�;1[� ]; : : : ;:Bs;�;i�1[� ];:Bs;�;i+1[� ]; : : : ;:Bs;�;k[� ].
by the logically equivalent disjunctive clausesBs;�;1[� ] _ � � � _ Bs;�;k[� ] :
Intuitively, in a minimal model precisely one of the atomsBs;�;i[� ] will be present, which means that one of the pos-
sible branchings is followed in a run. The current clauses
constitute a propositional program which derivesACCEPT
under GCWA iffT would acceptI if all its states were uni-
versal. We need to respect the9-states, however. For each9-states and time point� > 0, we set up the following
clauses, wheres0 is any9-state,� � � 0 � N , 0 � � � N ,
and1 � i � k:STs0 [� 0]  NACCEPT ; STs[� ],CC�[� 0; �]  NACCEPT ; STs[� ],WP [� 0; �]  NACCEPT ; STs[� ],Bs;�;i[� 0]  NACCEPT ; STs[� ].
Intuitively, these rules state that if a nonaccepting run enters
an9-state, i.e.,NACCEPT is true, then all relevant facts
involving a time point� 0 � � are true. This way, nonaccept-
ing runs are tilted. Finally, we set up for each nonaccepting
terminal9-states the clausesNACCEPT  STs[� ], 0 < � � N .

Intuitively, these clauses state thatNACCEPT is true if the
run ends in a nonaccepting state.

Let the resulting program beP+. The minimal modelsM of P+ which do not containNACCEPT correspond to
the accepting runs ofT .

It can be seen that the minimal models ofP+ which con-
tain NACCEPT correspond to the partial runs ofT from
the initial states0 to an9-states from which no completion
of the run ending in an accepting state is possible. This
implies thatP+ has some minimal modelM containingNACCEPT precisely ifT , by definition, does not accept
input I . Consequently,P+ j=GCWA :NACCEPT , i.e.,NACCEPT is in no minimal model ofP+, if and only ifT accepts inputI .

It is clear that the programP+ can be constructed
using logarithmic workspace. Consequently, decidingP j=GCWA :A is�p2-hard under logspace reductions.

Notice that many problems in the field of nonmonotonic
reasoning are�p2-complete, e.g. [65, 47, 50].

Stable negation naturally extends to disjunctive logic
programs, by adopting thatI is a stable model of a dis-
junctive logic programP iff I 2 MM(P I) [111]; it sub-
sumes disjunctive stratified semantics. For well-founded se-
mantics, no such natural extension is known. Clearly,P I is
easily computed, andP I = P if P is negation-free. Thus,

Theorem 5.2 ([49, 54, 55])DLP under SMS is�p2 com-
plete. Disjunctive datalog under SMS is data complete in�p2 and program complete inco-NEXPTIME NP.

The latter result was derived by utilizing complexity up-
grading techniques as described above in Section 3.3.

In the case with functions, we have:

Theorem 5.3 ([31]) Full DLP under GCWA is�02-com-
plete.

Theorem 5.4 ([49]) Full DLP under SMS is�11-complete.

Thus, disjunction adds complexity under GCWA and un-
der SMS in finite Herbrand universes (unless co-NP =�p2), but not in infinite ones. This is intuitively explained by
the fact that DLP under SMS corresponds to a weak frag-
ment of�12 which can be recursively translated to�11.

Many other semantics for DLP have been analyzed,
some having lower complexity than SMS, e.g., the possible
model semantics [27, 116] and the causal model semantics
[42], and others higher, e.g. the regular model semantics
[57]. However, typically they are�p2-complete in the pro-
positional case. (cf. [49, 100]).

6. Expressive power of logic programming

Theexpressive powerof query languages such as datalog
is a topic common to database theory [2] and finite model
theory [46] that has attracted much attention by both com-
munities.

By the expressive powerof a query language, we un-
derstand the set of all queries expressible in that language.
Note that we will not only mention query languages used in
database systems, but also formalisms used in formal logic
and finite model theory such as first and second-order logic
over finite structures or fixpoint logic (for precise definitions
consult [46]).

In general, a queryq defines a mappingMq that to each
suitable input databaseDin (over a fixed input schema) as-
signs a result databaseDout = Mq(Din ) (over a fixed
output schema); more logically speaking, a query defines
global relations [70]. For reasons of representation inde-
pendence, a query should, in addition, begeneric, i.e., in-
variant under automorphisms. This means that if� is an
automorphism of the input database, permuting elements of
the universe, i.e., names of constants, thenM(�(Din )) =
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�(Dout ). Thus, when we speak about queries, we always
mean generic queries.

Formally, theexpressive powerof a query languageQ
is the set of mappingsMq for all queriesq expressible in
languageQ.

There are two important research tasks in this context.
The first is comparing two query languagesQ1 andQ2 in
their expressive power. One may prove, for instance, thatQ1 � Q2, which means the set of all queries expressible inQ1 is a proper subset of the queries expressible inQ2, and
hence,Q2 is strictly more expressive thanQ1. Or one may
show that two query languagesQ1 andQ2 have the same
expressive power, denoted byQ1 = Q2, and so on.

The second research task, more related to complexity
theory, is determining the absolute expressive power of a
query language. This is mostly achieved by proving that a
given query languageQ is able to express exactly all quer-
ies whose evaluation complexity is in a complexity classC.
In this case, we say thatQ capturesC and write simplyQ = C. Theevaluation complexityof a query is the com-
plexity of checking whether a given atom belongs to the
query result, or, in the case of Boolean queries, whether the
query evaluates totrue [127, 70].

Note that there is a substantial difference between show-
ing that the query evaluation problem for a certain query
languageQ isC-complete and showing thatQ capturesC.
If the evaluation problem forQ isC-complete, thenat least
oneC-hard query is expressible inQ. If Q capturesC,
thenQ expressesall queries evaluable inC (including of
course allC-hard queries). Thus, usually proving thatQ
capturesC is much more involved than proving that evalu-
atingQ-queries isC-hard. Note also that it is possible that a
query languageQ captures a complexity classC for which
no complete problems exist or are known. As an example,
second-order logic over finite structures captures the Poly-
nomial HierarchyPH, although the existence of a complete
problem ofPH would imply its collapse.

The subdiscipline of database theory and finite model
theory dealing with the description of the expressive power
of query languages and related logical formalisms via
complexity classes is calleddescriptive complexity theory
[77, 90, 78]. An early foundational result in this field was
Fagin’s Theorem [58] stating that existential second-order
logic capturesNP. In the eighties and nineties, descriptive
complexity theory has become a flourishing discipline with
many deep and useful results.

To prove that a query languageQ captures a machine-
based complexity classC, one usually shows that eachC-
machine with (encodings of) finite structures as inputs that
computes a generic query can be represented by an expres-
sion in languageQ. There is, however, a slight mismatch
between ordinary machines and logical queries. A Turing
machine works on a string encoding of the input database

D. Such an encoding provides an implicitlinear order onD, in particular, on all elements of the universeUD. The
Turing machine can take profit of this order and use this or-
der in its computations (as long as genericity is obeyed).
On the other hand, in logic or database theory, the uni-
verseUD is a pure set and thus unordered. For “power-
ful” query languages of inherent nondeterministic nature at
the level ofNP this is not a problem, since an ordering
onUD can be nondeterministically guessed. However, for
many query languages, in particular, for those correspond-
ing to complexity classes belowNP, generating a linear
order is not possible. Therefore, one often assumes that a
linear ordering of the universe elements is predefined, i.e.,
given explicitly in the input database. More specifically,
by ordered databasesor ordered finite structures, we mean
databases whose schemas contain special relation symbolsSucc, First , andLast , that are always interpreted such thatSucc(x; y) is a successor relation of some linear order andFirst(x) determines the first element andLast(x) the last
element in this order. The importance of predefined linear
orderings becomes evident in the next two theorems.

Before coming to the theorems, we must highlight an-
other small mismatch between the Turing machine and the
datalog setting. A Turing machine can consider each input
bit independently of its value. On the other hand, a plain
datalog program is not able to detect that some atom isnot
a part of the input database. This is due to the represent-
ational peculiarity that only positive information is present
in a database, and that the negative information is under-
stood via the closed world assumption. To compensate this
deficiency, we will slightly augment the syntax of datalog.
Throughout this section, we will assume that input predic-
ates may appear negated in datalog rule bodies; the result-
ing language is datalog+. This extremely limited form of
negation is much weaker than stratified negation, and could
be easily circumvented by adopting a different representa-
tion for databases.

Theorem 6.1 (a fortiori from [28]) Datalog+ � P.

Proof. (Hint.) Show that there exists no datalog+ pro-
gramP that can tell whether the universeU of the input
database has an even number of elements.

Theorem 6.2 ([109, 67]; implicit in [127, 76]) On order-
ed databases, datalog+ capturesP.

Proof. (Sketch) By Theorem 4.1, query answering for a
fixed datalog+ program is inP. It thus remains to show
that each polynomial-time DTMT on finite input databasesD 2 INST (Din ) can be simulated by a datalog+ program.
To show this, we first make some simplifying assumptions.

1. The universeUD is an initial segment[0; n� 1] of the
integers, andSucc, First , andLast are from the nat-
ural linear ordering over this segment.

12
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2. The input database schemaDin consists of a single
binary relation G, plus the predefined predicatesSucc;First ;Last . In other words,D is always a graphhU;Gi.

3. T computes a Boolean (0-ary) predicate.

4. T operates in< nk steps, wheren = jU j > 1.

The simulation is akin to the simulation used in the
proofs of Theorems 3.2 and 3.5.

Recall the framework of Section 3.1. In the spirit of
this framework, it suffices to encodenk time-points� and
tape-cell numbers� within a fixed datalog program. This
is achieved by consideringk-tuplesx = hx1; : : : ; xki of
variablesxi ranging overU . Each suchk-tuple encodes the
integerint(x) =Pki=1 xi � nk�i.

The simulation starts at time point0, where the worktape
of T contains an encoding of the input graph. Recall that in
Section 3.1, this was reflected by the initialization factsCC�[0; �] 0 � � < jI j; whereI� = �:
Before translating this rules into appropriate datalog rules,
we shall spend a word about how input graphs are usually
represented as binary strings. A graphhU;Gi is encoded as
binary stringenc(U;G) of lengthjU j2. If G(i; j) is true fori; j 2 U = [0; n�1], then bit numberi�n+j of enc(U;G)
is 1, otherwise this bit is0.

The bit positions ofenc(U;G) are exactly the integers
from 0 to n2 � 1. These integers are represented by allk-tuplesh0k�2; x; yi such thatx; y 2 U . Moreover, the bit-
position int(h0k�2; x; yi) of enc(U;G) is 1 iff G(x; y) is
true in the input database and0 otherwise.

The above initialization rules can therefore be translated
into the datalog rulesCC1(0k; 0k�2; x; y)  G(x; y)CC0(0k; 0k�2; x; y)  :G(x; y)

Intuitively, the first rule says that ifG(x; y) is true, then
at time point0 = int(0k), bit numberint(h0k�2; x; yi) of
the worktape is 1 ifG(x; y) is true. The second rule states
that the same bit is false ifG(x; y) is false. Note that the
second rule applies negation to an input predicate.This is
the only rule in the entire datalog+ program using negation.
Clearly, these two rules simulate that at time point0, the
cellsc0,. . . ,cn2�1 contain precisely the stringenc(U;G).

The other initialization rules described in Section 3.1 are
also easily translated into appropriate datalog rules. Letus
now see how the other rules are translated into datalog.

From the linear order given bySucc(x; y),First(x), andLast(x), it is easy to define by datalog clauses a linear order�k on k-tuplesSucck(x;y), Firstk(x), Lastk(x) (see the
proof of Theorem 3.5), by usingSucc1 = Succ, First1 =First andLast1 = Last .

By usingSucck, transition rules, inertia rules and the
accept rules are easily translated into datalog as in the proof
of Theorem 3.5.

The output schema of the resulting datalog programP+
is defined to beDout = fACCEPTg. It is clear that this
program evaluates totrue on inputD = hU;Gi, i.e.,P+ [D j= ACCEPT true, iff T acceptsenc(U;G).

The generalization to a setting where the simplifying as-
sumptions 1–4 are not made is rather straightforward and is
omitted.

Let us now state somewhat more succinctly interesting
results on datalog. A prominent query language isfix-
point logic(FPL), which is the extension of first-order lo-
gic by a least fixpoint operatorlfp(x; '; S), whereS is ajxj-ary predicate occurring positively in' = '(x;S) andx1; : : : ; xk are free variables in'; intuitively, it returns the
least fixpoint of the operator� defined by�(S) = fa jD j= '(a;S)g. See [28, 2, 46] for details.

As shown in [28],FPL expresses a proper subset of the
queries inP. Datalog+ relates toFPL as follows.

Theorem 6.3 ([29]) Datalog+ = FPL+(9), i.e., coincides
with the fragment ofFPL having negation restricted to
database relations and only existential quantifiers.

Theorem 6.4 ([84]; implicit in [36]) Stratified datalog�FPL.

The previous theorem is not obvious. In fact, for some
time coincidence of the two languages was assumed, based
on [29]. The non-recursive fragment of datalog coincides
with well-known database query languages.

Theorem 6.5 (cf. [2]) Non-recursive datalog = relational
algebra = SQL = relational calculus.

Unstratified negation yields higher expressive power.

Theorem 6.6 ([124];[3], using [71]) Datalog under WFS
= FPL; FPL = datalog under INFS.

As recently shown, the previous result holds also for total
WFS (i.e., the well-founded model is always total) [61].

On ordered databases, Theorem 6.2 and the theorems in
Section 4 imply

Theorem 6.7 On ordered databases, stratified datalog,
datalog under INFS, and datalog under WFS captureP.

Syntactical restrictions allow to capture classes withinP. Let datalog+(1) be the fragment of datalog+ where each
rule has most one nondatabase predicate in the body, and let
datalog+(1; d) be the fragment of datalog+(1) where each
predicate occurs in at most one rule head.

13
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Theorem 6.8 ([67, 128])On ordered databases, data-
log+(1) capturesNL and datalog+(1; d) capturesL.

Due to inherent nondeterminism, stable semantics is
much more expressive.

Theorem 6.9 ([119]) Datalog under SMS capturesco-NP.

Note that for this result an order on the input database is
not needed. Informally, in each stable model such an order-
ing can be guessed and checked by the program. By Fagin’s
Theorem [58], this implies that datalog under SMS is equi-
valent to the existential fragment of second-order logic over
finite structures.

Theorem 6.10 ([3]) On ordered databases, datalog under
NINFS capturesPSPACE.

Here ordering is needed. An interesting result in this
context, formulated in terms of datalog, is the following [3]:
datalog under INFS = datalog on NINFSon arbitrary finite
databasesif and only if P=PSPACE. While the “only if”
direction is obvious, the proof of the “if” direction is in-
volved. It is one of the rare examples that translates open
relationships between deterministic complexity classes into
corresponding relationships between query languages.

Finally, we briefly address the expressive power of dis-
junctive logic programs and full logic programs. In the
latter case, the input databases are arbitrary (not necessary
recursive) relations on the genuine (infinite) Herbrand uni-
verse of the program.

Theorem 6.11 ([54, 55])Disjunctive datalog under SMS
captures�p2.
Theorem 6.12 ([119, 51])Full LP under WFS, full LP un-
der SMS, and full DLP under SMS all express�11.

For further expressiveness results, see e.g. [119, 114,
115, 57]. In particular, further classes of the polynomial
hierarchy can be captured by variants of stable models
[115, 114, 57, 23] as well as through modular logic pro-
gramming [56].

7. Unification and its complexity

What is the complexity of query answering for very
simple logic programs consisting of one fact? This prob-
lem leads us to the problem of solving equations over terms,
known as theunification problem.Unification lies in the
very heart of implementations of LP and automated reason-
ing systems.

Atoms or termss andt are calledunifiableif there exists
a substitution# that makes them equal, i.e. the termss#
andt# coincide; such a substitution# is called aunifier of

s andt. The unification problem is the decision problem:
given termss andt, are they unifiable?

Robinson described in [113] an algorithm that solves this
problem and, if the answer is positive, computes a most gen-
eral unifier of given two terms. His algorithm had exponen-
tial time and space complexity mainly because of the repres-
entation of terms by strings of symbols. Using better repres-
entations (for example, by directed acyclic graphs), Robin-
son’s algorithm was improved to linear time algorithms (e.g.
[101, 110]).

Theorem 7.1 ([44, 131, 45])The unification problem isP-
complete under logspace reductions.P-hardness of the unification problem was proved by re-
ductions from some versions of the circuit value problem in
[44, 131, 45]. (Article [91] stated that unifiability is com-
plete in co-NL , however, [44] gives a counterexample to the
proof in [91].)

Also, many quadratic time and almost linear time uni-
fication algorithms have been proposed because these al-
gorithms are often more suitable for applications and gen-
eralizations (see a survey of main unification algorithms
in [12]). Here we mention only Martelli and Montanari’s
algorithm [102] based on ideas going back to famous
Herbrand’s work [73]. Modifications of this algorithm are
widely used for unification in equational theories and re-
writing systems. The time complexity of Martelli and
Montanari’s algorithm isO(nA�1(n)) where A�1 is a
function inverse to Ackermann’s function (thus,A�1(n)
grows very slowly).

8. Logic programming with equality

The relational model of data deals with simple values,
namely tuples consisting of atomic components. Vari-
ous generalizations and formalisms have been proposed to
handle more complex values like nested tuples, tuples of
sets, etc. [1]. Most of these formalisms can be expressed in
terms of LP with equality [62, 63, 74, 72, 39] and constraint
logic programming considered in Section 9.

8.1. Equational theories

Let L be a language containing the equality predicate=. By anequationoverL we mean an atoms = t wheres and t are terms inL. An equational theoryE overL
is a set of equations closed under the logical consequence
relation, i.e. a set satisfying the following conditions: (i) E
contains the equationx = x; (ii) if E containss = t thenE containst = s; (iii) if E containsr = s ands = t thenE containsr = t; (iv) if E containss1 = t1; : : : ; sn = tn
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thenE containsf(s1; : : : ; sn) = f(t1; : : : ; tn) for eachn-
ary function symbolf 2 L; and (v) ifE containss = t thenE containss# = t# for all substitutions#.

The syntax oflogic programs over an equational theoryE coincides with that of ordinary LP. Their semantics is
defined as a generalization of the semantics of LP so that
terms are identified if they are equal inE.

Example 7 We demonstrate logic programs with equality
by a logic program processing finite sets. Finite sets are
a typical example of complex values handled in databases.
We represent finite sets by ground terms as follows: (i) the
constantfg denotes the empty set, (ii) ifs represents a set
andt is a ground term thenft j sg represents the setftg[ s
(whereftg ands need not be disjoint). However the equal-
ity on sets is defined not as identity of terms but as equality
in the equational theory in which terms are considered to be
equal if and only if they represent equal sets (we omit the
axiomatization of this theory).

Consider a very simple program that checks whether two
given sets have a non-empty intersection. This program
consists of one factnon empty intersection(fX j Y1g; fX j Y2g)  :
For example, to check that the setsf1; 3; 5g andf4; 1; 7g have a common member, we ask the querynon empty intersection(f1; 3; 5g; f4; 1; 7g). The answer
will be positive. Indeed, the following system of equationsfX j Y1g = f1; 3; 5g; fX j Y2g = f4; 1; 7g
has solutions in the equational theory of sets, for exampleX = 1, Y1 = f3; 5g, Y2 = f7; 4; 1g.

Note that if we represent sets by lists in plain LP without
equality, any encoding ofnon empty intersection will re-
quire recursion.

The complexity of logic programs overE depends on
the complexity of solving systems of term equations inE.
The problem of whether a system of term equations is solv-
able in an equational theoryE is known as the problem of
simultaneousE-unification.

A substitution# is called anE-unifierof termss andt if
the equations# = t# is a logical consequence of the theoryE. By theE-unification problemwe mean the problem of
whether there exists anE-unifier of two given terms. Or-
dinary unification can be viewed asE-unification whereE
contains only trivial equationst = t. It is natural to think of
anE-unifier ofs andt as asolutionto the equations = t in
the theoryE.

8.2. Complexity ofE-unification

It is practically impossible to overview all results on the
complexity ofE-unification because any result on solv-

ing equation systems can be viewed as a result onE-
unification (solving equations is a traditional subject of all
mathematics). Therefore, we restrict this survey to only few
cases closely connected with LP. The general theory ofE-
unification may be found e.g. in [12].

Let E be an equational theory overL and� be a binary
function symbol inL (written in the infix form). We call� an
associativesymbol ifE contains the equationx�(y�z) = (x�y) �z, wherex; y andz are variables. Similarly,� is called an
AC-symbol(an abbreviation for an associative-commutative
symbol) if � is associative and, in addition,E containsx�y =y �x. If � is an AC-symbol andE containsx�x = x, we call�
anACI-symbol(I stands for idempotence). Also,� is called
an AC1-symbol(or anACI1-symbol) if � is an AC-symbol
(an ACI-symbol respectively) andE contains the equationx � 1 = x where 1 is a constant belonging toL.

Theorem 8.1 ([96, 11, 17, 86])Let E be an equational
theory defining a function symbol� in L as an associative
symbol (E contains all logical consequences ofx � (y � z) =(x � y) � z and no other equations). The following upper
and lower bounds on the complexity of theE-unification
problem hold: (i) this problem is in 3-NEXPTIME , (ii) this
problem isNP-hard.

Basically, all algorithms for unification under associativ-
ity are based on Makanin’s algorithm for word equations
[96]. The 3-NEXPTIME upper bound is obtained in [86].

The following theorem characterizes other popular kinds
of equational theories.

Theorem 8.2 ([82, 83])LetE be an equational theory de-
fining some symbols as AC-symbols or ACI-symbols or
AC1-symbol or ACI1-symbols (there can be one or more of
these kinds of symbols). The theoryE is assumed to con-
tain no other equations. Then theE-unification problem is
NP-complete.

8.3. Complexity of non-recursive logic program-
ming with equality

In the case of ordinary unification, there is a simple way
to reduce solvability of finite systems of equations to solv-
ability of single equations. However, these two kinds of
solvability are not equivalent for some theories: there exists
an equational theoryE such that the solvability problem for
one equation is decidable, while solvability for systems is
undecidable [106].

SimultaneousE-unification determines decidability of
non-recursive LP overE.

Theorem 8.3 ([38]) LetE be an equational theory. Non-
recursive LP overE is decidable if and only if the problem
of simultaneousE-unification is decidable.
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An equational theoryE is calledNP-solvableif the prob-
lem of solvability of equation systems inE is in NP. For ex-
ample, the equational theory of finite sets mentioned above,
the equational theory of bags (i.e. finite multisets) and the
equational theory of trees (containing only equationst = t)
areNP-solvable [38].

Theorem 8.4 ([37, 38])Non-recursive LP over anNP-
solvable equational theoryE is in NEXPTIME . Moreover,
if E is a theory of trees, or bags, or finite sets, or any
combination of them, then non-recursive LP overE is also
NEXPTIME -complete.

9. Constraint logic programming

Informally, constraint logic programming (CLP) extends
LP by involving additional conditions on terms. These con-
ditions are expressed byconstraints,i.e. equations, disequa-
tions, inequations etc. over terms. The semantics of such
constraints is predefined and does not depend on logic pro-
grams.

Example 8 We illustrate CLP by the standard example.
Suppose that we would like to solve the following puzzle:+ S E N DM O R EM O N E Y
All these letters are variables ranging over decimal digits0; 1; : : : ; 9. As usual, different letters denote different di-
gits andS;M 6= 0. This puzzle can be solved by a con-
straint logic program over the domain of integers(Z;=; 6=;�;+;�; 0; 1; : : :). Informally, this program can be written
as follows.�nd(S;E;N;D; M;O;R;E; M;O;N;E; Y ) 1 � S � 9; : : : ; 0 � Y � 9;S 6= E; : : : ; R 6= Y;1000 � S + 100 �E + 10 �N +D+1000 �M + 100 �O + 10 �R +E =10000 �M + 1000 �O + 100 �N + 10 �E + Y
The query�nd(S;E;N;D; M;O;R;E; M;O;N;E; Y )
will be answered by the only solution+ 9 5 6 71 0 8 51 0 6 5 2

A structure is defined by an interpretationI of a lan-
guageL in a nonempty setD. For example, we shall
consider the structure defined by the standard interpreta-
tion of the language consisting of the constant 0, the suc-
cessor function symbols and the equality predicate= in

the setN of natural numbers. This structure is denoted by(N;=; s; 0). Other examples of structures are obtained by
replacingN by the setsZ (the integers),Q (the rational
numbers),R (the reals) orC (the complex numbers). Be-
low we denote structures in a similar way, keeping in mind
the standard interpretation of arithmetic function symbols in
number sets. The symbols� and= stand for multiplication
and division respectively. We usen �x to denote unary func-
tions of multiplication by particular numbers (of the corres-
ponding domain);xn is used similarly. All structures under
consideration are assumed to contain the equality symbol.

Let S be a structure. An atomc(t1; : : : ; tk) wheret1; : : : ; tk are terms in the language ofS is called acon-
straint. By a constraint logic program overS we mean a
finite set of rulesp(x)  c1; : : : ; cm; q1(x1); : : : ; qn(xn)
where c1; : : : ; cm are constraints,p; q1; : : : ; qn are pre-
dicate symbols not occurring in the language ofS, andx;x1; : : : ;xn are lists of variables. Semantics of CLP is
defined as a natural generalization of semantics of LP (e.g.
[79]). If S contains function symbols interpreted as tree
constructors (i.e. equality of corresponding terms is inter-
preted as ordinary unification) then CLP overS is an exten-
sion of LP. Otherwise, CLP overS can be regarded as an
extension of Datalog by constraints.

9.1. Complexity of constraint logic programming

There are two sources of complexity in CLP: complex-
ity of solving systems of constraints and complexity com-
ing from the LP scheme. However, interaction of these
two components can lead to complexity much higher than
merely the sum of their complexities. For example, Data-
log (which isDEXPTIME -complete) with linear arithmetic
constraints (whose satisfiability problem is inNP for in-
tegers and inP for rational numbers and reals) is undecid-
able.

Theorem 9.1 ([35]) CLP over(N;=; s; 0) is r.e.-complete.
The same holds for any ofZ;Q;R andC instead ofN .

The proof uses the fact that CLP over(N;=; S; 0; 1) al-
lows one to define addition and multiplication in terms of
successor. Thus, diophantine equations can be expressed in
this fragment of CLP.

On the other hand, simpler constraints, namely con-
straints over ordered infinite domains (of some particular
kind), do not increase the complexity of Datalog.

Theorem 9.2 ([34]) CLP over(Z;=; <; 0;�1;�2; : : :) is
DEXPTIME -complete. The same holds for any ofQ or R
instead ofZ.
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Decidable fragments of CLP over more complex struc-
tures are obtained by restrictions imposed on constraint lo-
gic programs. For example, we consider aconservative
CLP in which rules satisfy the restriction: all variables oc-
curring in the body occur in the head.

Theorem 9.3 ([35]) Conservative CLP isDEXPTIME -
complete over any of the following structures:(Q;=;�; <;+;�; n � x; 0; 1; : : :), i.e. linear inequa-

tions over the rational numbers;(R;=;�; <;+;�; n � x; 0; 1; : : :), i.e. linear inequa-
tions over the reals;(R;=;�; <;+;�;�; =; xn; 0; 1; : : :), i.e. polynomial
inequations over the reals;(C;=;+;�;�; =; xn; 0; 1; : : :), i.e. polynomial equa-
tions over the complex numbers.

The proof is based on the known results on the com-
plexity of algorithms for the corresponding algebraic struc-
tures [25, 112, 69, 75]. If we allow non-ground quer-
ies, DEXPTIME -completeness should be replaced by
NEXPTIME -completeness.

10. Expressive power of logic programming-
with complex values

The expressive power of datalog queries is defined in
terms of input and output databases, i.e. finite sets of tuples.
To extend the notion of expressive power to logic program-
ming with complex values, we have to define what we mean
by an input. For example, in the case of plain logic pro-
gramming, an input may be a finite set of ground terms, i.e.
a finite set of trees. In the case of logic programming with
sets, an input may be a set whose elements may be sets too
and so on.

Various models and languages for dealing with complex
values in databases have been proposed. The comparat-
ive expressive power of such formalisms is studied, for ex-
ample, in [1]. This paper introduces a model for restricted
combinations of tuples and sets and several corresponding
query languages, including the algebraic and logic program-
ming ones. It is proved that all these languages define the
same class of queries.

The absolute expressive power of such languages (in
terms of complexity classes) is studied for example in
[117, 92, 93] which, in particular, show how the express-
ive power depends on the way of representing complex
values. For a natural representation of hereditarily finite
sets by graphs, there is a logical query language (called
Bounded Set Theory) that capturesP. Some other versions
of Bounded Set Theory are shown to captureL andNL .

Other interesting results on the expressive power of dif-
ferent forms of LP with constraints can be found e.g. in
[33, 81, 18, 126].

Unlike research on the expressive power of datalog, there
is no mainstream in research on the expressive power of
LP with complex values. The latter research yielded so
far a number of ad hoc results and approaches. This can
be explained by several reasons. One reason is that differ-
ent kinds of complex values require different computational
models. Another reason is that the same kind of complex
values admits many different definitions of the input and
output.

Extension of declarative query languages by complex
values is one of the main problems of database theory and
practice. More research is required to develop unifying
paradigms for understanding their expressive power.
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Power of Unique Total Stable Model Semantics. InProc.
ICALP 97, 1997. To appear.

[24] M. Cadoli and M. Schaerf. A Survey of Complexity Res-
ults for Non-monotonic Logics.J. Logic Programming,
17:127–160, 1993.

[25] J. Canny. Some algebraic and geometric computations in
PSPACE. InProc. 20th Annual ACM STOC, pp. 460–467,
Chicago, Illinois, 1988.

[26] S. Ceri, G. Gottlob, and L. Tanca.Logic Programming and
Databases. Springer, 1990.

[27] E. Chan. A Possible Worlds Semantics for Disjunctive
Databases.IEEE Transactions on Knowledge and Data
Engineering, 5(2):282–292, 1993.

[28] A. Chandra and D. Harel. Structure and Complexity of Re-
lational Queries.J. Computer and System Sciences, 25:99–
128, 1982.

[29] A. Chandra and D. Harel. Horn Clause Queries and Gen-
eralizations.J. Logic Programming, 2:1–15, 1985.

[30] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation.
JACM, 28:114–133, 1981.

[31] J. Chomicki and V. Subrahmanian. Generalized Closed
World Assumption is�02-Complete. Information Pro-
cessing Letters, 34:289–291, 1990.

[32] A. Colmerauer, H. Kanoui, P. Roussel, and R. Passero. Un
système de communication homme-machine en Francais.
Technical report, Groupe de Recherche en Intelligence Ar-
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