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Complexity and Expressive Power of Logic Programming

Evgeny Dantsih Thomas Eitet Georg Gottlob Andrei Voronkov

Abstract With the advent of the programming language Pro-
log [32], the paradigm of logic programming became soon
This paper surveys various complexity results on differ- ready for practical use. Many applications in differenteere
ent forms of logic programming. The main focus is on de- were and are successfully implemented in Prolog. Note that
cidable forms of logic programming, in particular, propesi  Prolog is — in a sense — only an approximation to fully de-
tional logic programming and datalog, but we also mention clarative LP. In fact, the clause matching and backtracking
general logic programming with function symbols. Next to algorithms at the core of Prolog are sensitive to the orderin
classical results on plain logic programming (pure Horn of the clauses in a program and of the atoms in a rule body.
clause programs), more recent results on various import-  While Prolog has become a popular programming lan-
ant extensions of logic programming are surveyed. Theseguage taught in many computer science curricula, research
include logic programming with different forms of nega- focuses more on pure LP and on extensions thereof. Even
tion, disjunctive logic programming, logic programming in some application areas suchkagwledge representation
with equality, and constraint logic programming. The com- (a subfield of artificial intelligence) andatabaseshere is
plexity of the unification problem is also addressed. a predominant need for full declarativeness, and hence for
pure LP. In knowledge representation, declarative exten-
sions of pure logic programming, such as negation in rule
bodies and disjunction in rule heads, are used to formalize
common sense reasoning. In the database context, the query

, Logic programming (LP) is a wgll—known declarat'— languagedatalogwas designed and intensively studied (see
ive method of knowledge representation and programmlng[%, 122]). This query language — based on function-free

based on the idea that the language of first order logic ISpure LP — allows a user to formulate recursive queries that

well-suited for both representing data gnd describing de- cannot be expressed with standard query languages such as
sired outputs [87]. LP was developed in the early 1970’s SQL-2

based on work in automated theorem proving [68, 88], in
particular, on Robinsoniesolution principld113]. A pure
logic program consists of a set of rules, also called defin-
ite Horn clauses. Each such rule has the fowad—body,
whereheadis a logical atom antlodyis a conjunction of lo-
gical atoms. The logical semantics of such a rule is given by
the implicationbody=- head(for a more precise account,

1. Introduction

There are many interesting complexity results on LP.
These results are not limited to “classical” complexity-the
ory but also comprise expressiveness results in the sense of
descriptive complexity thearyFor example, it was shown
that (a slight extension of) datalog cannot just express
some but actuallyall polynomially computable queries on

) ) ) t ly those. Th tal isel
see Section 2). Note that the semantics of a pure logic pro_ordered databases and only those us datalog precisely

am i mpletelv independent of the order in which it expresse®r capturesthe complexity clas® on ordered
gram Is completely incependent of the orde CN 1S jatabases. Similar results were obtained for many variants

clauses are given, and of the order of the single atoms "Mand extensions of datalog. It turned out that all major vari-

each rule body.
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ants of datalog can be characterized by suitable complexity
classes. As a consequence, complexity theory has become a
very important tool for comparing logic programming form-
alisms.

This paper surveys various complexity and expressive-
ness results on different forms of (purely declarative) LP.
The aim of the paper is twofold. First, a broad survey and
many pointers to the literature are given. Second, a few fun-
damental topics are explained in greater detail, in padicu
the basic results on plain LP (Section 3) and some funda-
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mental issues related to descriptive complexity (Sectjon 6 is ground if all ¢; are ground. Thélerbrand basef a lan-
These two sections are written in a more tutorial style and guageZ is the set of all ground atoms that can be formed
contain several proofs, while the other sections are writte by using predicates frord and terms front/ .

in a rather succinct survey style. A Horn clauses a rule of the form
Note that the present paper does not consist of an encyc-
lopedic listing of all published complexity results on logi Ag + Ay, ..., A, (m >0) Q)

programming, but rather of a more or less subjective choice
of results. There are many interesting results which we can-where eacty; is an atom. The parts on the left and on the
not mention for space reasons; such results may be found irright of “<" are theheadand thebodyof the rule, respect-
other surveys, such as, e.g., [24, 118]. For example, ssult ively. A ruler of the formA4, «, i.e., whose body is empty,
on abductive logic programming [52, 53], on intuitionistic is called afact, and if A, is a ground atom, thenis called
logic programming [22], and on Prolog [41]. aground fact

The paper is organized as follows. In Section 2 a short A logic programis a finite set of Horn clauses. A clause
introduction to LP is given. We introduce datalog and dis- or logic program is ground, if all terms in it are ground.
tinguish between the notions data complexityprogram With each logic progran®, we associate the language
complexity andcombined complexityf classes of datalog  £(P) that consists of the predicates, functions and constants
programs. Section 3 presents the main complexity resultsoccurring in P. If no constant occurs i, we add some
on plain LP and datalog. Section 4 discusses the complex-constant to”(P) for technical reasons. Unless stated other-
ity of LP with negated atoms in rule bodies. Section 5 deals wise, £(P) is the underlying language, and we use simpli-
with disjunctive logic programming. Section 6 discusses fied notatiorl/» andBp for U p) andB.p), respectively.
the expressive power of datalog and of various datalog ex- A Herbrand interpretatiorof a logic programp is any
tensions. Section 7 reports on the complexity of the unifica- subsetl C Bp of its Herbrand base. Intuitively, the atoms
tion problem. Section 8 deals with LP extended by equality. in T are true, while all others are false. Herbrand model
Finally, Section 9 deals with the complexity obnstraint  of P is a Herbrand interpretation d? such that for each

logic programmingand with the expressive power of logic rule A, « A,,...,A,, in P, this interpretation satisfies
programming with complex values. the logical formulavx((A; A --- A Ay,) = Ag), wherex

is a list of the variables in the rule.
2. Preliminaries Propositional logic programs are logic programs in

which all predicates have arity 0, i.e., all atoms are prepos

In this section, we introduce some basic concepts of lo- itional ones.
gic programming. Due to space reasons, the presentation
is necessarily succinct; for a more detailed treatment, seeExample 1 Here is an example of a propositional logic pro-
[94, 6, 9, 15]. gram:
We wuse letters p,q,... for predicate symbols,
X, Y, Z, ... forvariables,f, g, h, ... for function symbols,
anda, b, c, . .. for constants; a bold face version of a letter
denotes a list of symbols of the respective type.

shut_down < overheat
shut_down < leak
leak < wvalve_closed, pressure_loss
valve_closed < signal_1
pressure_loss < signal_2
overheat < signal_3
signal_1 +
signal_2 <«

2.1. Syntax of logic programs

Logic programs are formulated in a languafj®f pre-
dicates and functions of nonnegative arity; 0-ary funcion
are constants. A languaggis function-freeif it contains
no function symbols of arity greater than 0.

A termis inductively defined as follows: each varialile
and each constantis a term, and iff is ann-ary function
symbols and, ... t, are terms, therf(t:, ...,t,) is a ) )
term. A term is ground, if no variable occurs in it. 2.2. Semantics of logic programs

The Herbrand universeof £, denoted/,, is the set of
all ground terms which can be formed by the functionsand  The notions of a Herbrand interpretation and model can
constants inC. be generalized for infinite sets of clauses in a natural way.

An atom is a formula p(t:,...,t,), wherep is a Let P be a set (finite or infinite) of ground clauses. Such

predicate symbol of arityn and each; is aterm. An atom  a setP defines an operatdfp : 257 — 257 where2”r

Note that if P is a propositional logic program theBp
is a set of propositional atoms. Any interpretationfofs a
subset of the propositional atoms.
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denotes the set of all Herbrand interpretation®oby

Tp(I) = {A € Bp | P contains a rule
A[) (—Al,...,Am
suchthatf A;,..., A, } C I}
This operator is called themmediate consequence oper-
ator; intuitively, it yields all atoms that can be derived by
a single application of some rule A given the atoms id.
SinceTp is monotone, by the Knaster-Tarski Theorem it
has a least fixpoint, denoted tyg°, which is the limit of
the sequenc@® = 0, T = Tp(Th),i > 0.
A ground atomd is aconsequencef a setP of clauses if
A € T (we write P |= A). Also, by definition, a negated
ground atom- A is aconsequencef P, denotedP |= — A,
if A ¢ T'z°. Thesemanticof a setP of ground clauses is
defined as the following se¥1(P) consisting of atoms and
negated atoms:

M(P) ={A|P=A}U{-A| Pz -A}
—TEU{-A| A€ Bp\T&}.

Example 1(ctd) For programP above, we have

=0
Th =
T% = T} U {valve_closed, pressure_loss}
T} = T3 U {leak}

T =T = T3 U {shut_down}

{signal_1, signal_2}

Thus, the least fixpoint is reached in four steps; gk
shut_down andP = —overheat.

It appears that for each s&t of clauses'>° coincides
with the uniqudeast Herbrand model af, where a model
M is smaller than a modéY, if M is a proper subset a¥
[123].

The semantics of arbitrary logic programs is now defined

as follows. Let thegroundingof a clauser in a language
L, denotedground(r, £), be the set of all clauses obtained
from r by all possible substitutions of elementsidf for
the variables irr. For any logic progran®, we define

ground (P, L) = U ground(r, L)
reP

and we write ground(P) for ground(P,L(P)). The

operator Tp 2B 2BP gssociated withP is
defined byTp = Tyouna(p)- Accordingly, M(P) =
M(ground(P)).

Example 2 Let P be the program

pla) <

(
p(f(x)) « p(=)

Then,Up = {a, f(a), f(f(a)),...} and ground(P) con-

tains the clauses(a) <, p(f(a)) < p(a), p(f(f(a))) +
p(f(a)), .... The least fixpoint of p is

=T yrounacpy = {p(f"(a)) | n > 0}.
Hence, e.gP = p(f(f(a))).

In practice, generatinground(P) is often cumbersome,
since, even in case of function-free languages, it is in gen-
eral exponential in the size d?. Moreover, it is not al-
ways necessary to compute((P) in order to determine
whetherP = A for some particular atord. For these reas-
ons, completely different strategies of deriving atomsrfro
a logic program have been developed. These strategies are
based on variants of Robinson’s famdRssolution Prin-
ciple[113]. The major variant is SLD-resolution [88, 10].

Roughly, SLD-resolution can be described as follows. A
goalis a conjunction of atoms. A substitution is a function
9 that maps variables,, ..., v, to termst;,...,t,. The
result of simultaneous replacement of variahlgby terms
t; in an expressiork is denoted byE+). For a given goal
G and a progranP, SLD-resolution tries to find a substi-
tution «¥ such thatz+ logically follows from P. The initial
goal is repeatedly transformed until the empty goal is ob-
tained. Each transformation step is based on the applicatio
of the resolution rule to aselected atonB; from the goal
By,...,B,andaclausely «+ Ay,..., A, from P. SLD-
resolution tries taunify B; with the headA,, i.e. to find a
substitutiony such thatdq,9 = B;4. Such a substitutiofl
is called aunifierof Ay andB;. If such a unifien? is found,
the goal is transformed into

Ty

(B]7"'7Bi7]714]7-'-7An7Bi+]7"'7Bm),l9‘

For a more precise account, see [6, 94]; for resolution on
general clauses, see e.g. [89]. The complexity of unificatio
will be dealt with in Section 7.

2.3. Datalog

Logic programming is a suitable formalism for querying
relational databases. In this context, the LP-based query
languagealatalogand various extensions thereof have been
defined. Over traditional query languages such as reldtiona
algebra or SQL-2, datalog has the advantage of being able
to expressecursive queries

In the context of LP, relational databases are identified
with sets of ground fact®(ci,...,c,). Intuitively, all
ground facts with the same predicate sympalepresent
a data relation. The set of all predicate symbols occurring
in the database together with a possibly infirdtamainfor
the argument constants is teehemaf the database. With
each databasP we associate a finite univergg, of con-
stants which encompasses at least all constants appeaaring i
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D, but possibly more. In the classical database contéxt,
is often identified with the set of all constants appearing in
D. But in the datalog context, a larger univet$g may be

A databasgalso,database instangeD over a schema
D is given by a finite subset of the Herbrand bdseC
HB(D) together with an associated finite univetse such

suitable in case one wants to derive assertions about itemshat C C Up C Dom(D), where C denotes the set

that do not explicitly occur in the database.
To understand how datalog works, let us state a clarify-
ing example.

Example 3 Consider a database containing the ground
facts

father (john, mary

father (joe, kurt

mother(mary, joe

mother (tina, kurt) <

)
)
)

The schema of this database is the set of rela-
tion symbols {father, mother} together with the do-
main STRING of all alphanumeric strings. With
this database we associate the finite univeige =
{john, mary, joe, tina, kurt, susan}. Note thatsusardoes

of all constants actually appearing i. By abuse of
notation, we also writeD instead of(D,Up). We de-
note by D|p the extension of the relatiop € Rels(D)

in D. Moreover, INST(D) denotes the set of all data-
bases oveD. A datalog queryor a datalog programis a
function-free logic progran® with three associated data-
base schemas: the input schefdg,, the output schema
D.u: and the complete schenid, such that the following
is satisfied: Dom(D;,) = Dom(D,y:) = Dom(D) and
Rels(Din) C Rels(D) and Rels(Dyut) C Rels(D) and
Rels(Din) N Rels(Dyyur) = 0. Moreover, each predicate
symbol appearing iR is contained inRels(D) and no pre-
dicate symbol fronD;,, appears in a rule head gt (the
latter means that the input database is never modified by a
datalog program).

not appear in the database but is included in the universe The formal semantics of a datalog prografh over

Up.
The following datalog program (or query) computes
all ancestor relationships relative to this database:

parent(X,Y) < father(X,Y)
parent(X,Y) < mother(X,Y)
ancestor(X,Y) « parent(X,Y)
ancestor(X,Y) < parent(X, Z), ancestor(Z,Y)
person(X) +

In the programP, father andmother are theinput pre-
dicates also calleddatabase predicatesTheir interpreta-
tion is fixed by the given input databage The predicates
ancestor andperson areoutput predicatesand the predic-
ateparentis anauxiliary predicate Intuitively, the output

the input schem&;,,, output schem&,,;, and complete
schemaD is given by a partial mapping from instances of
Din to instances oD,,; over the same universe. A result
instance ofD,,; is regarded as the result of the query. More
formally, Mp : INST(D;,,) — INST(D,.:) is defined for
all instancedD;, € INST(D,,) such that all constants oc-
curring in P appear inUp,, , and maps every such;, to
the databas®,,; = Mp(D;,) such thatUp,,, = Up,,
and, for every relatiop € Rels(D,ut),

D out|lp = {c | p(c) € M(ground(PU D, L(P,D;,)))},

where M and ground are defined as in Section 2.2 and
L(P, D,,) is the language oP U D,,, extended by all con-

predicates are those which are computed as the visible resulstants in the univers&p, . For all ground atomsd €

of the query, while the auxiliary predicates are introduced
for representing some intermediate results, which areaot t
be considered part of the final result.

The datalog progran® on input databas® computes
a result databas®& with the schemg ancestor, person}
containing among others the following ground facts:
ancestor(mary, joe), ancestor(john, joe), person(john),
person(susan). The last fact is inR becausesusan
is included as a constant iVp. However, the fact
person(harry) is notin R, becauséarry is not a constant
in the finite universé/, of the databas®.

Formally, adatabase schem® consists of a finite set
Rels(D) of relation names with associated arities and a
(possibly infinite) domainDom(D). For each database
schemaD, we denote byHB(D) the Herbrand base cor-
responding to the function-free language whose predic-
ate symbols ardrels(D) and whose constant symbols are
Dom (D).

HB(D ), we write PU Dy, = Aif A € Mp(Dyy,)
andwriteP U D;,, = -Aif A ¢ Mp(Djy,).

The semantics of datalog is thirheritedfrom the se-
mantics of LP. In a similar way, the semantics of various
extensions of datalog is inherited from the corresponding
extensions of logic programming.

There are three interesting complexity issues connected
to plain datalog and its various extensions.

e The data complexity is the complexity of checking
whetherD;, U P = A for afixeddatalog progran?
andvariableinput databaseb;,, and ground atom4d.

e Theprogram complexity is the complexity of check-

ing whetherD,, U P = A for variable datalog pro-

gramsP and ground atomsl over afixedinput data-
baseD;, . We recall that ifD,,, is fixed, then the set of
constants that may appearfandA is fixed too.
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e Thecombined complexityis the complexity of check-
ing whetherD;,, U P = A for variable datalog pro-
gramsP, ground atomsi, and input database;,, .

Note that for plain datalog, as well as for all other ver-
sions of datalog considered in this paper, the combined
complexity is equivalent to the program complexity w.r.t.
polynomial-time reductions. This is due to the fact that
w.r.t. the derivation of ground atoms, each péir;,, P)
can be easily reduced to the p&idy, P*), whereDy is

The transition functiond is represented by a table
whose rows are quintuplés, o, o', d, s'), whose meaning
is stated as follows as an if-then-rule:

if at some instant of time 7" is in states, the workhead
is positioned at celt,, and cellc, holds symboh
thenat instantr + 1, T is in states’, the cellc, holds
symbola’, and the workhead is positionedat + d.

Here, it is assumed without loss of generality tHa$
—1 wheneverr = 0, i.e., the workhead never moves left of

the empty database instance associated with a universe ogo

two constantg; andc,, andP* is obtained fromP U D,,,

by straightforward encoding of the univerEe,, usingn-
tuples over{ci, co }, wheren = [|Up,, |]. For this reason,
we mostly disregard the combined complexity in the mater-
ial concerning datalog. We remark, however, that due to a
fixed universe, program complexity may allow for slightly

It is possible to describe the complete evolution of a
DTM T on input string! from its initial configurationat
time instant) to the configuration at insta¥ by a propos-
itional logic programL P(T, I, N). For achieving this, we
define various classes of propositional atoms:

sharper upper bounds than the combined complexity (e.9.,CCy[r,7] for0 < 7 < N, 0 < 7 < N, anda € X.

DETIME vsDEXPTIME ).

As for LP in general, a generalization of the combined
complexity may be regarded as the main complexity meas-
ure. Below, when we speak about the complexity of a frag-
ment of LP, we mean the following kind of complexity:

e Thecomplexity (for LP) is the complexity of checking

whetherP |= A for variable both programsP and
ground atomsA.

3. Complexity of plain logic programming

In this section we survey some basic results on the com-

plexity of plain LP. This section is written in a slightly mer
tutorial style than the following sections in order to help
both readers not familiar with LP and readers not too famil-
iar with complexity theory to grasp some key issues relating
complexity theory and logic programming.

3.1. Simulation of Deterministic Turing machines
by logic programs

Formally, adeterministic Turing machine (DTM} a
quintupleT = (X,5,4,s9,ST), whereX. is a finite al-

phabet of tape symbols, containing also the special blank

symbol #, S is a finite set of states} : (S x ¥) —

¥ x {-1,0,1} x S is the transition functionsg € S is

the initial state, and* C S is the set of accepting states;
without loss of generality we assume that every accepting
state is a terminal state, i.e., whene¥eenters an accept-
ing state, it remains in this state and stops running.

A DTM has a semi-infinite worktape whose cells
o, C1,Co ... are on input/ initialized as follows. Cells
co, - - -, ¢|r—1 contain the symbols of string, where|I| is
the length off, and all other cells contait.

Intuitive meaning: Atinstant of the computation, cell
m contains symbod.

WP[r,x] for0 < 7 < N,and0 < 7 < N. Intuitive
meaning: At instant- the workhead is positioned at
cell numberr.

STy[r] for0 < 7 < N, ands € S. Intuitive meaning: At
instantr the machine is in state

ACCEPT: the machine has reached an accepting state.

Let us denote byl; the i-th symbol of string/
Io - - 1)), Theinitial configuration of" on input/ is re-
flected by the followingnitialization factsin LP(T', I, N):

CCL[0, 7] « for0 < =« < |I|, wherel, = «
CCx[0,7] for|I| <7 <N
W P[0,0] +

ST, [0]

Each entry(s,a,a’,d, s’y of the transition table) is
translated into the following propositional Horn clauses,
which we call theransition rules The clauses are asserted
foreachvalue of andr suchthad < 7 < N,0< 7 < N,
and0 < 7 +d < N.

CCylr + 1,7] < STy[1], CCy[7, 7|, WP|T

WP[r + 1,7 +d] < STy[7], CCy[7, 7], WP|T
ST [T + 1]  STs[r], CCy[7, 7], WP[T

]
]
]

These clauses almost perfectly describe what is happen-
ing during a state transition from instanto instantr + 1.
However, it should not be forgotten that those tape cells
which are not changed during the transition keep there old
values at instant + 1. This must be reflected by what
we terminertia rules These rules are asserted for each
time instantr and tape cellg,, ¢, where0 < 7 < N,

0 < 7w < 7w’ < N, and have the following form:

T
T
T
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CCu|1 + 1,7 = CCylr, 7], WP[1, 7] first principles unveils the computational nature of LP and
CCu[m + 1,7'] = CCy[r,n'], W P[1,7] provides a basic framework form which further results will
be derived by slight adaptations in the sequel.

Notice thatin a standard programming environment, pro-
positional LP is feasible in linear time by using appropriat
data structures, as follows from results about decidingiHor

Finally, a group of clauses termeatcept rulesderives
the propositional atomd CCEPT, whenever an accepting
configuration is reached.

ACCEPT « ST,[7] for0<r<N.sc S+ satisfiability [43]. This does not mean that all problemPin
i - are solvable in linear time; first, the model of computation

gram LP = LP(T,I,N) is reached aﬂ“INIjQ, and the time reductions may in general polynomially increase the
ground atoms added t67,, 1 < 7 < N + 1, i.e., those  INput.

in 77, \ T7 ", describe the configuration @f on input/ Theorem 3.2 holds under stronger reductions. In fact,
at time instant- — 1. The fixpointZ'ss, containsA CCEPT it holds under the requirement that the logspace reduction
if and only if an accepting configuration has been reachediS also a polylogtime reduction (PLT). Briefly, a mgp:
by T'in < N computation steps. We thus have: IT — I’ from problemlI to problemII’ is a PLT-reduction,

if there are polylogtime deterministic direct access Tgrin
Lemma3.1 LP(T,I,N) = ACCEPT if and only if ma- machines (DDATMs)V, M such that for alw, N(w) =

chineT accepts the input string within N steps. |f(w)| and for allw andn, M (w,n) = Bit(n, f(w)), i.e.,
the n-th bit of f(w) (see e.g. [129] for details). (Recall
3.2. Complexity of propositional LP that a DDATM has a separate input tape whose cells can be

indirectly accessed by use of an index register tape.) Since
The simulation of a DTM by a propositional logic pro- the above encoding of a DTM into LP is highly regular, it is

gram, as described in Section 3.1 is almost all we need in or-€2Sily seen thatitis a PLT reduction.

der to determine the complexity of propositional LP, i.ee t Syntactical restrictions on programs lead to complete-
complexity of deciding whetheP = A holds for a given ~ N€SS for classes insid® Let L P(k) denote logic restricted
logic programP and ground atora. to programs where each clause has at mastoms in the

body. Then, by results in [127, 77], one easily obtains

Theorem 3.2 (implicit in [80, 127, 76]) Propositional LP

is P-complete under logspace reductions. Theorem 3.3 LP(1) is NL-complete under logspace re-

ductions.

Proof. a) Membership It obvious that the least fixpoint

T of the operatofl'», given programP, can be computed

in polynomial time: the number of iterations (i.e. applic-

ations ofT'’p) is bounded by the number of rules plus one.

Each iteration step is clearly feasible in polynomial time.
b) Hardness Let A be a language if®. ThusA is de-

cidable ing(n) steps by a DTMI" for some polynomia. .

Transform each instandeof A to the corresponding logic ~ 3-3- Complexity of datalog

programLP(T,I,q(]I])) as described in Section 3.1. By

Lemma 3.1,LP(T,1,q(|I|)) = ACCEPT if and only if Let us now turn to datalog, and let us first consider data

T has reached an accepting state within) steps. The  complexity. Grounding” on an input databasP yields

translation fromI to LP(T,I,q(|I])) is very simple and ~ Polynomially many clauses in the size &f; hence, the

is clearly feasible in logarithmic space, since all rules of complexity of propositional LP is an upper bound for the

LP(T,I,q(|I])) can be generated independently of each data complexity. This is analogous for the variants of data-

other and each has size logarithmic in the input; note that/og we shall consider subsequently. The complexity of pro-

the numbers- and = haveO(log ||) bits, while all other ~ Positional LP is also a lower bound. Thus,

syntactic constituents of a rule have constant size. We have o ]

thus shown that every languagén P is logspace reducible 1 neorem 3.4 (implicit in [127, 76]) Datalog is data com-

to propositional LP. Hence, logic programmingBshard ~ Plete inP.

under logspace reductions. [ ]

Notice that the above DTM encoding can be easily mod-
ified to programs in.P(2). Hence,L.P(2) is P-complete.

Further restrictions yield problems complete for(of
course, under reductions stronger than logspace redsgtion
which we omit here.

In fact, this result follows from the proof of Theorem 6.2.

Obviously, this theorem can be proved by simpler re- An alternative proof ofP-hardness can be given by writing
ductions from otheP-complete problems, e.g. from the a simple datalogneta-interpretefor propositionall. P(k),
monotone circuit value problem; however, our proof from wherek is a constant.
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Representruledy <+ Aq,...,A;,0 <i <k, by tuples
(Ao, ..., A;) inani+1-ary relationR; on the propositional
atoms. Then, a progratf in LP(k) stored this way in a
databasé® (P) can be evaluated by a fixed datalog program
Py (k) which contains for each relatioR;, 0 < i < k, a
rule

T(l’o) «— T(:L‘]), ey T(:L‘Z) Ri(l‘g, Caey CL’Z)

HereT'(z) intuitively means that atom is true. ThenP =

A precisely if Pyyy U P(D) = T(A). P-hardness of the
data complexity of datalog is immediate from Theorem 3.2.

The program complexity is exponentially higher.

Theorem 3.5 (implicit in [127, 76]) Datalog is program
complete ilEXPTIME .

Proof. (Sketch) a)Membership GroundingP on D
leads to a propositional prograff whose size is exponen-
tial in the size of the fixed input databage Hence, by
Theorem 3.2, the program complexity iSDEXPTIME .

b) Hardness In order to proveDEXPTIME -hardness,
we show that if a DTMI halts in less thav = 27" steps
on a given inpufl where|I| = n thenT can be simulated
by a datalog program over a fixed input datab#se In
fact, we useDy, i.e. the empty database with the universe
U=1{0,1}.

We employ the scheme of the DTM encoding into LP
from above, but use the predicat€€’,, (z,y), W P(x,y),
STs(z) instead of the propositional letter§'C,[r, 7],

W P[r,n], ST,[r], respectively. The time pointsand tape
positionst from 0 to 2 — 1, m = n*, are represented by
me-ary tuples ovet/, on which the functions +1 andr +d
are realized by means of the succesSatc™ from a linear
order<™ onU™.

For an inductive definition, suppos@ucc’(x,y),
First'(x), and Last’ (x) tell the successor, the first, and the
last element from a linear ordet? on U?, wherex andy
have arityi. Then, use rules

Succ™(
Suce'™(

2,X,2,y) « Succ'(x,y)

2,x,2'y) < Succ'(z,2'), Last' (x), First'(y)
First'™" (z,x) « First'(z), First'(x)
Last™ ' (z,x) < Last'(z), Last'(x)

Here Succ' (z,y), First'(z), and Last* (z) on U' = U

must be provided. For our reduction, we use the usual or-

dering0 <! 1 and provide those relations by the ground
factsSucc' (0,1), First' (0), andLast' (1).

The initialization factsC'C, [0, 7] are readily translated
into the datalog rule€’'C, (x,t) < First™(x), wheret
represents the position, and similarly the fact$¥” P[0, 0]
andSTs, [0]. The remaining initialization fact€’C4 [0, ],
|I| <7 < N, are translated to the rule

CCyx(x,y) « First™(x), <™(t,y)

wheret represents the numbéf|; <™ is easily defined
from Succ™ by two clauses.

The transition and inertia rules are easily translated into
datalog rules. For realizing + 1 resp.w + d, use in the
body atomsSucc™ (x,x'). For example, the clause

CCylr + 1,7 « ST,[1],CC,[7, 7], W P[1, 7]
is translated into
CCO{' (X,) Y) — STS (X)) CC& (Xa Y)7 WP(Xa Y)7 SUCCm(X, X,)'

The translation of the accept rules is straightforward.

For the resulting datalog prografl, it holds thatP’ U
Dy |= ACCEPT if and only if T' accepts inpufl in <
N steps. It is easy to see th& can be constructed in
logarithmic workspace froni” andI. Hence, datalog has
DEXPTIME -hard program complexity.

Note that straightforward simplifications in the construc-
tion are possible, which we omit here, as part of it will be
reused below. [ |

Instead of using a generic reduction, the hardness part of
this theorem can also be obtained by applying complexity
upgrading techniques [108, 14]. We briefly outline this in
the rest of this section.

This technique utilizes a conversion lemma [14] of the
form “If TI X-reduces toll’, then s(IT) Y-reduces to
s(IT");" here s(IT) is the succinct variant of, where the
instanced of II are given by a Boolean circuit; which
computes the bits of (see [14] for details). The strongest
form of the conversion lemma appears in [129], whéare
is PLT andY is monotone projection reducibility [77].
The conversion lemma gives rise to an upgrading theorem
[14, 54, 66, 129], stated here in the strongest form of [129]:

Theorem 3.6 Let C; and C. be complexity classes s.t.
long(C1) C Ca. If IT is hard forC» under PLT-reductions,
thens(IT) is hard for C; under projection reductions.

Here long(C1) = {long(A)
long(A) = U,e1410, 1}

From the observations in Section 3.2, we then obtain
that s(LP(2)) is DEXPTIME -hard under projection re-
ductions, where each programis stored in the database
D(P), which is represented by a binary string in the stand-
ard way.

s(LP(2)) can be reduced to evaluating a datalog pro-
gram P* over a fixed database as follows. From a succinct
instance ofLP(2), i.e., a Boolean circuit’; for I = D(P),
Boolean circuitsC; for computingR;, 0 < i < 2 can be
constructed which use negation merely on input gates.

Each such circui€’; (x) can be simulated by straightfor-
ward datalog rules. E.g., axrgateg; with input from gates

| A € Ci}, where

www.manaraa.com



g; andg, is described by a rulg;(x) + g;(x), gx(x), and Theorem 3.9 ([120]) LP  with function symbols is

anVv-gateg; is described by the ruleg(x) < g;(x) and PSPACE-complete, if eachrule is restricted as follows: The

9i(x) « gr(x). body contains only one atom, the size of the head is greater
The desired progranP* comprises the rules for the than or equal to that of the body, and the number of occur-

Boolean circuitsC; and the rules of the meta-interpreter rences of any variable in the body is less than or equal to

Pyir(k), which are adapted for a binary encoding of the the number of its occurrences in the head.

domainUpp) of the databas®(P) by using binary tuples

of arity [log |Uppy|]. This construction is feasible in log- For further investigations of decidability of subclasses
space, from whicDEXPTIME -hard program complexity ~ Of logic programs, see [40]. See also [20, 60] for further
of datalog follows. See [54, 55, 66] for details. material on recursion-theoretic issues related to LP.

3.4. Complexity of LP with functions 4. Complexity of LP with negation

Let us see what happens if we allow function symbols in 4 1 Stratified negation
logic programs. In this case, entailment of an atom is no
longer decidable. To prove it, we can, for example, reduce
Hilbert's Tenth Problem to the query answering in full LP.
Natural numbers can be represented using the con8tant are complementaryfor any literal L, we denote by-.L
and the successor functien Addition and multiplication its complementary literal, and for any s&it of literals,
are expressed by the following simple logic program: ~.Lit = {~.L | L € Lit}.

A literal L is either an atomA (called positivg or a
negated atom-A (called negativ®. Literals A and -4

r4+0=1« A normal clauses a rule of the form

r+sy)=s(z)«z+y==z

PO AeTLi,...,Lm  (m>0) @)
rxsly) =z rxy=uu+zr=2z whereA is an atom and each; is a literal. Anormal logic
programis a finite set of normal clauses.
Now, UndeCldablIlty of full LP follows from undecidab- The semantics of normal |Ogic programs is not Straight-
ility for diophantine equations [103]. Moreover, this r@du  forward, and numerous proposals exist (cf. [9]). However,
tion shows r.e.-completeness of LP. there is general consensus for stratified normal logic pro-

grams.
A normal logic progran¥ is stratified[8], if there is an

Of course, this theorem may as well be proved by a simple 8ssignmenstr(-) of integers 0,1,... to the predicatgsn
encoding of Turing machines similar as in the proof of The- > such that for each clausén P the following holds: Ifp
orem 3.5 (use termg”(c), n > 0, for representing cell is the predicate in the head ohndqthe prgdmat_gm af;
positions and time instants). Theorem 3.7 was generalizedfom the body, thersir(p) > str(q) if L; is positive, and
in [130] for more expressive S-semantics and C-semanticsst7(p) > str(q) if L; is negative.
[59]. Thereductof a normal logic progran® by a Herbrand

A natural decidable fragment of LP with functions are interpretation 7 [64], denoted P, is obtained from
non-recursive programs, in which intuitively no predicate 9round(P) as follows: first remove every clausewith a
depends syntactically on itself (see Section 4.1 for a defin-negative literall. in the body such that.Z € I, and then
ition). Their complexity is characterized by the following rémove all negative literals from the remaining rules. No-

Theorem 3.7 ([5, 121]) Full LP is r.e.-complete.

theorem. tice thatP! is a set of ground Horn clauses.

The semantics of a stratified normal prograiis then
Theorem 3.8 ([37]) Non-recursive LP isNEXPTIME - defined as follows. Take an arbitrary stratificatian. De-
complete. note by P_,, the set of ruleg such thatstr(p) = k, where

p is the head predicate of Define a sequence of Herbrand

The membership is established by applying SLD- interpretations:M, = 0, and M, is the least Herbrand
resolution with constraints. The size of the derivatiomsur model ofP"{f U My, for k > 0. Finally, let

out to be exponentiaNEXPTIME -hardness is proved by
reduction from the tiling problem for the squaze x 2. M (P) =, M; U{-A| A ¢ U, M;}.

Some other fragments of LP with function symbols are
known to be decidable. For example, the following result The semantics\ ;. does not depend on the stratification
was established in [120], by using a simulation of alternat- str [8]. Note that in the propositional caskl;.(P) is
ing Turing machines by logic programs and vice versa. polynomially computable.
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Theorem 4.1 (implicit in [8]) Stratified propositional LP ~ Example 4 Let P be the following program:
is P-complete. Stratified datalog is data completd?iand

program complete iDEXPTIME . sleep < —work

work < —sleep
For full LP, stratified negation yields the arithmetical

hierarchy. Then M; = {sleep} and My = {work} are the stable

models ofP.

Theorem 4.2 ([7]) Full LP with n levels of stratified nega-
tion is X9, , -complete. Denote bySM(P) the set of stable models d?. The

meaning ofP under thestable model semanti¢SMS) is

See [21, 107] for further complexity results on stratifica-
tion. Mu(P)= [ (MU~.(Bp\M)).

A particular case of stratified negation are non-recursive MeSM(P)
logic programs. A stratified program ron-recursiveif it
has a stratification such that each predigateecurs in its ~ Note that every stratified has a unique stable model, and
defining stratumP_,;,.(,) only in the heads of rules. E.g., its Stl’.atlfled and stablg semantics coincide. Unstratified
the logic program produced by the DTM encoding from rules increase complexity.

above is non-recursive. ) N )
Theorem 4.6 ([99]) Given a propositional logic program

Theorem 4.3 (implicit [77, 127]) Non-recursive proposi- P, deciding whetheSM (P) # () is NP-complete.
tional LP isP-complete. Non-recursive datalog has logtime _ _ o
uniform AC® data complexit§77] and is program complete ~ Proof. &) Membership Clearly, P' is polynomial time

in PSPACE computable fromP andI. Hence, a stable modal of P
can be guessed and checked in polynomial time.
4.2. Well-founded negation b) Hardness Modify the DTM encoding in Section 3

for a nondeterministic Turing machine (NTM) as fol-
Roughly, the well-founded semantics [125] (WFS) as- lows. For each state and symbola, introduce atoms

signs value “unknown” to ator, if it is defined by unstrat- Bs,a,1[7],- +» Bsax[r] foralll < 7 < N and transitions
ified negation. Briefly, WFS can be defined as follows [16]. (5@, @, di, i), 1 < i < k. Add B; 4 ;[7] in the bodies of
Let Fp(I) be the operatoFp(I) = Tg5. SinceFp(l)  thetransition rules fofs, a, aj, d;, s;) and the rule

is anti-monotoneF (1) is monotone, and thus has a least
and a greatest fixpoint, denoted B{ 1°° and F3 |, re-
spectively. Then, the meaning of a prograhunder WFS,
Maps(P), is Intuitively, these rules nondeterministically selectgsely
910 9 oo one of the possible transitions fera at time instantr,
Mugs(P) = Fp1 U{=A[ A ¢ Fpl>}. whose transition rules are enabled V8 ,, ;[7]. Finally,
add arule

Bs7a,i[7_] — _‘Bs7a,] [T]7 ey _‘Bs7a,i71 [T]:

Notice that on stratified programs, WFS and stratified se-

mantics coincide. ACCEPT < -ACCEPT.

It ensuresACCEPT is true in every stable model. The
stable modeld/ of the resulting program correspond to the
accepting runs of . [ |

Theorem 4.4 (implicit in [124, 125]) LP under WFS i$-
complete. Datalog under WFS is data completéiand
program complete iDEXPTIME .

- - , As an easy consequence,
Whether deciding” |=,,s A can be done in linear-time

is open [19]. For full LP, the following is known. Theorem 4.7 ([99, 119]; cf. also [85])LP under SMS is
co-NP-complete. Datalog under SMS is data complete in

—
Theorem 4.5 ([119]) Full LP under WFS id1;-complete. co-NP and program complete ioo-NEXPTIME .

4.3. LP under the stable model semantics For full LP, SMS has the same complexity as WFS.

An interpretation/ of a normal logic progranP is a Theorem 4.8 ([119, 98]))Full LP under SMS isII}-
stable modebf P [64], if I = T3, i.e, I is the least  complete.
Herbrand model of?!.

In general, a normal logic progra® may have zero, Further results on stable models of recursive (rather than
one, or multiple stable models. only finite) logic programs can be found in [97].
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4.4. Inflationary and noninflationary semantics

The inflationary semantics (INFS) [3, 2] is inspired by
inflationary fixpoint logic [71]. In place of'&, it uses the
limit T3 of the sequenc@? = (), T = Tp(Th),i > 0,
whereTp is the inflationary operatdF (I) = T U Tp: ().
CIearIy,T;;O is computable in polynomial time for a propos-

itional programP. Moreover,T5° coincides withTs® for
Horn clause programB. Therefore, by the above results

Theorem 4.9 ([3]; implicitin [71]) LP under INFS isP-
complete. Datalog under INFS is data completeéPimand
program complete iDEXPTIME .

The noninflationary semantics (NINFS) [3], in the ver-
sion of [4, page 373], uses in place Bf° the limit T2°
of the sequenc@? = §, Tit! = Tp(TE), i > 0, where
Tp(I) = Tp: (1), if it exists other\Nise,f}‘;O is undefined.

Similar equivalent algebraic query languages have been de-

scribed earlier in [28, 127]. In particular, datalog undé+ N
FNS is equivalent to partial fixpoint logic [3, 2].

As easily seenT's° is for a propositional progranf
computable in polynomial space; this bound is tight.

Theorem 4.10 ([3, 2])LP under NINFS is PSPACE
complete.
PSPACE and program complete iBEXPSPACE.

4.5. Further semantics of negation

A number of interesting further semantics, e.g. partial
(maximal) stable models, regular models, perfect models, 2
and 3-valued completion semantics, fixpoint models, must
remain undiscussed here; see e.g. [119, 115, 85] for more

details and complexity results.
5. Disjunctive logic programming

Informally, disjunctive logic programming (DLP) ex-

Example 5 P = {p V q <} has the two minimal models
M, = {p} andM, = {q}.

Denote byMM(P) the set of minimal Herbrand mod-
els of P. The Generalized Closed World Assumption
[104] (GCWA) for negation-free® amounts to the mean-
ing Maewa(P) = {L|MM(P) | L}.

Example 6 Consider the following prograrf?’, describing
the behavior of a reviewer while reviewing a paper:

good V bad < paper
happy < good
angry < bad
smoke < happy
smoke < angry
paper

The following models of?’ are minimal:

My = {paper, good, happy, smoke} and
My = {paper, bad, angry, smoke}.

Under GCWA, we haveP =gewa while

P %GCWA gOOd andP %GCWA —|gOOd.

smoke,

Theorem 5.1 ([48]) (i) DecidingP =gcow a A is co-NP-

Datalog under NINFS is data complete in complete, and(ii) deciding P [Fgowa —A is II}-

complete.

Proof. It is easy to see that for an atorh, it holds
P Egoewa Aifandonly if P Epe A, wherel=pe is
classical logical consequence. Hence, by the well-known
NP-completeness of SAT, paft) is obvious.
Let us thus consider pafti).
a) Membership It holds P [£qewa —A, if and only
if there exists am/ € MM(P) such thatM [~ —A4, i.e.,
A € M. Clearly, a guess fol can be verified with an
oracle forNP in polynomial time; from this, membership
of the problem irl1} follows.

b) Hardness (Sketch) We showlI}-hardness by an en-
coding of alternating Turing machines (ATM) [30]. Recall

tends LP by adding disjunction in the rule heads, in order that an ATMT has its set of states partitioned into exist-
to allow more suitable knowledge representation and to in- ential @) and universalY) states. If the machine reaches

crease expressiveness. E.g.,
male(X) V female(X) < person(X)

naturally represents that any person is either male or femal
A disjunctive (general) logic prograiis a set of clauses

AV (k>1,m>0). (3)

an3-state (respv-state)s in a run, then the input is accep-
ted if the computation continued in some (resp. all) of the
possible successor configurations is accepting.

The polynomial-time bounded ATMs which start iva
statesg and have one alternation, i.e., precisely one trans-
ition from aV-state to ard-state in each run (and no reverse
transition), solve precisely the problemslif, [30].

By adapting the construction in the proof of The-

For a background, see [95] and the more recent [105]. orem 4.6, we show how any such machifieon input 7

The semantics of-free disjunctive logic programs is based

can be simulated by a disjunctive logic programun-

onminimalHerbrand models, as the least (unique minimal) der GCWA. W.l.o.g., we assume that each runTofis

model does not exist in general.

10

polynomial-time bounded [13].
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We start from the clauses constructed for the NTMn
input? in the proof of Theorem 4.6, from which we drop the
clauseACCEPT + —~ACCEPT and replace the clauses

Bs7a,i[7_] — _‘Bs,ozﬂ [T]7 ey _'BS,Ohi*] [T]7
_‘Bs,oz7i+1 [T]7 sy _‘Bs7a,k[7_]-

by the logically equivalent disjunctive clauses
Bsan1[T) V-V Bgak|T] <

Intuitively, in a minimal model precisely one of the atoms

B o i[7] will be present, which means that one of the pos-
sible branchings is followed in a run. The current clauses

constitute a propositional program which dern&SCEPT
under GCWA iffT" would accept if all its states were uni-
versal. We need to respect tAestates, however. For each
I-states and time pointr > 0, we set up the following
clauses, where' is any3-state,r < 7' < N,0 <7 < N,
andl <i <k:

STy [r'] « NACCEPT, ST, ],
CC,[r',7] « NACCEPT,ST,|r
WP[r',n] + NACCEPT,ST[1],

Bs.oi[T'] + NACCEPT,ST;|T].

]

],

]
a, ]
Intuitively, these rules state that if a nonaccepting ruieen
an 3-state, i.e., NACCEPT is true, then all relevant facts
involving atime point”’ > 7 are true. This way, nonaccept-

Stable negation naturally extends to disjunctive logic
programs, by adopting thdt is a stable model of a dis-
junctive logic programP iff I € MM(PT) [111]; it sub-
sumes disjunctive stratified semantics. For well-founded s
mantics, no such natural extension is known. Cledrlyjs
easily computed, an®’ = P if P is negation-free. Thus,

Theorem 5.2 ([49, 54, 55])DLP under SMS id15 com-
plete. Disjunctive datalog under SMS is data complete in
I15 and program complete ioo-NEXPTIME NP

The latter result was derived by utilizing complexity up-
grading techniques as described above in Section 3.3.
In the case with functions, we have:

Theorem 5.3 ([31]) Full DLP under GCWA isIT$-com-
plete.

Theorem 5.4 ([49]) Full DLP under SMS i41}-complete.

Thus, disjunction adds complexity under GCWA and un-
der SMS in finite Herbrand universes (unless¥® =
IT%), but not in infinite ones. This is intuitively explained by
the fact that DLP under SMS corresponds to a weak frag-
ment of IT} which can be recursively translatedfg .

Many other semantics for DLP have been analyzed,
some having lower complexity than SMS, e.qg., the possible
model semantics [27, 116] and the causal model semantics
[42], and others higher, e.g. the regular model semantics
[57]. However, typically they ar&I}-complete in the pro-

ing runs are tilted. Finally, we set up for each nonaccepting positional case. (cf. [49, 100]).

terminal3-states the clauses
NACCEPT « ST,[r], 0 <7 <N.

Intuitively, these clauses state thad CCEPT is true if the
run ends in a nonaccepting state.

Let the resulting program b£+. The minimal models
M of P+ whichdo not containNACCEPT correspond to
the accepting runs df.

It can be seen that the minimal modelgof which con-
tain NACCEPT correspond to the partial runs @f from
the initial states, to an3-states from which no completion

6. Expressive power of logic programming

Theexpressive poweaf query languages such as datalog
is a topic common to database theory [2] and finite model
theory [46] that has attracted much attention by both com-
munities.

By the expressive poweof a query language, we un-
derstand the set of all queries expressible in that language
Note that we will not only mention query languages used in
database systems, but also formalisms used in formal logic

of the run ending in an accepting state is possible. Thisand finite model theory such as first and second-order logic

implies that P+ has some minimal model/ containing
NACCEPT precisely if T, by definition, does not accept
input I. ConsequentlyP* E=gcwa —NACCEPT, i.e.,
NACCEPT is in no minimal model ofP™, if and only if
T accepts inpuf.

It is clear that the progranP® can be constructed
using logarithmic workspace.
P Egewa —A isIIh-hard under logspace reductionssl

over finite structures or fixpoint logic (for precise definits
consult [46]).

In general, a query defines a mappingA, that to each
suitable input databage;,, (over a fixed input schema) as-
signs a result databade,,; = M,(D;,) (over a fixed
output schema); more logically speaking, a query defines

Consequently, deciding global relations [70]. For reasons of representation inde-

pendence, a query should, in addition,deneric i.e., in-
variant under automorphisms. This means that i an

Notice that many problems in the field of nonmonotonic automorphism of the input database, permuting elements of

reasoning ar&I?-complete, e.g. [65, 47, 50].
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the universe, i.e., names of constants, theitr(D;,)) =
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7(Dout). Thus, when we speak about queries, we always D. Such an encoding provides an impliitear order on

mean generic queries.

Formally, theexpressive poweof a query languag®
is the set of mappings, for all queriesq expressible in
language?).

There are two important research tasks in this context
The first is comparing two query languag@s and@- in

D, in particular, on all elements of the univerS§g. The

Turing machine can take profit of this order and use this or-
der in its computations (as long as genericity is obeyed).
On the other hand, in logic or database theory, the uni-

verseU), is a pure set and thus unordered. For “power-

ful” query languages of inherent nondeterministic nature a

their expressive power. One may prove, for instance, thatthe level of NP this is not a problem, since an ordering

@1 C @2, which means the set of all queries expressible in
Q1 is a proper subset of the queries expressibl@inand
hence (), is strictly more expressive thap,. Or one may
show that two query languagél and(@- have the same
expressive power, denoted B = ()2, and so on.

on Up can be nondeterministically guessed. However, for
many query languages, in particular, for those correspond-
ing to complexity classes beloWP, generating a linear
order is not possible. Therefore, one often assumes that a
linear ordering of the universe elements is predefined, i.e.

The second research task, more related to complexitydiven explicitly in the input database. More specifically,
theory, is determining the absolute expressive power of abPy ordered databasesr ordered finite structurgsve mean

query language. This is mostly achieved by proving that a databases whose schemas contain special relation symbols

given query languagé is able to express exactly all quer-
ies whose evaluation complexity is in a complexity class

In this case, we say tha@ capturesC and write simply

) = C. Theevaluation complexitef a query is the com-
plexity of checking whether a given atom belongs to the

query result, or, in the case of Boolean queries, whether the

query evaluates tvue [127, 70].

Note that there is a substantial difference between show-

ing that the query evaluation problem for a certain query
language?) is C-complete and showing thét capturesC.

If the evaluation problem fof) is C-complete, themt least
one C-hard query is expressible ip. If () capturesC,
then @ expressesll queries evaluable i€ (including of
course allC-hard queries). Thus, usually proving that
capture<C is much more involved than proving that evalu-
ating@-queriesigC-hard. Note also that it is possible that a
guery languagé) captures a complexity cla€s for which

no complete problems exist or are known. As an example
second-order logic over finite structures captures the-Poly
nomial HierarchyPH, although the existence of a complete
problem of PH would imply its collapse.

Suce, First, and Last, that are always interpreted such that
Suce(z,y) is a successor relation of some linear order and
First(z) determines the first element afidst(z) the last
element in this order. The importance of predefined linear
orderings becomes evident in the next two theorems.
Before coming to the theorems, we must highlight an-
other small mismatch between the Turing machine and the
datalog setting. A Turing machine can consider each input
bit independently of its value. On the other hand, a plain
datalog program is not able to detect that some atonois
a part of the input database. This is due to the represent-
ational peculiarity that only positive information is pess
in a database, and that the negative information is under-
stood via the closed world assumption. To compensate this
deficiency, we will slightly augment the syntax of datalog.
Throughout this section, we will assume that input predic-
ates may appear negated in datalog rule bodies; the result-
ing language is datalofy. This extremely limited form of
"negation is much weaker than stratified negation, and could
be easily circumvented by adopting a different representa-
tion for databases.

The subdiscipline of database theory and finite model Theorem 6.1 (a fortiori from [28]) Datalog" C P.

theory dealing with the description of the expressive power

of query languages and related logical formalisms via
complexity classes is calledescriptive complexity theory
[77, 90, 78]. An early foundational result in this field was
Fagin’s Theorem [58] stating that existential second-orde
logic capturesNP. In the eighties and nineties, descriptive
complexity theory has become a flourishing discipline with
many deep and useful results.

To prove that a query languagg captures a machine-
based complexity clasg, one usually shows that ea€+

machine with (encodings of) finite structures as inputs that
computes a generic query can be represented by an expre

sion in languag&). There is, however, a slight mismatch

between ordinary machines and logical queries. A Turing
machine works on a string encoding of the input database

12

Proof.  (Hint.) Show that there exists no datafogro-
gram P that can tell whether the univergé of the input
database has an even number of elements. [ ]

Theorem 6.2 ([109, 67]; implicitin [127, 76]) On order-
ed databases, dataldgcapturesP.

Proof.  (Sketch) By Theorem 4.1, query answering for a
fixed datalog program is inP. It thus remains to show
that each polynomial-time DTN on finite input databases
D € INST(D;,) can be simulated by a datalogrogram.
Jo show this, we first make some simplifying assumptions.

1. The universé/p is an initial segmeni0, n — 1] of the
integers, anduce, First, and Last are from the nat-
ural linear ordering over this segment.
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2. The input database scherfig, consists of a single
binary relation G, plus the predefined predicates
Suce, First, Last. In other words D is always a graph
(U,G).

3. T' computes a Boolean (0-ary) predicate.
4. T operates i< n* steps, where = |U| > 1.

The simulation is akin to the simulation used in the
proofs of Theorems 3.2 and 3.5.

Recall the framework of Section 3.1. In the spirit of
this framework, it suffices to encodé time-pointsr and
tape-cell numbers within a fixed datalog program. This
is achieved by considering-tuplesx = (z1,...,z;) of
variablesr; ranging ovetU. Each suclt-tuple encodes the
integerint(x) = Y&, a; x n* 4,

The simulation starts at time poidtwhere the worktape
of T' contains an encoding of the input graph. Recall thatin

Section 3.1, this was reflected by the initialization facts
CC,[0,7] « 0 <7< |I|, wherel, = a.

Before translating this rules into appropriate datalogsul

By using Succ®, transition rules, inertia rules and the
acceptrules are easily translated into datalog as in thaf pro
of Theorem 3.5.

The output schema of the resulting datalog progfam
is defined to beD,,, = {ACCEPT}. Itis clear that this
program evaluates tiwue on inputD = (U, G), i.e., PT U
D = ACCEPT true, iff T acceptsnc(U, G).

The generalization to a setting where the simplifying as-
sumptions 1-4 are not made is rather straightforward and is
omitted. |

Let us now state somewhat more succinctly interesting
results on datalog. A prominent query languagdfixs
point logic(F'P L), which is the extension of first-order lo-
gic by a least fixpoint operatdifp(x, ¢, S), whereS is a
|x|-ary predicate occurring positively ip = p(x;S) and
x1,...,z are free variables ip; intuitively, it returns the
least fixpoint of the operatdr defined byI'(S) = {a |
D = p(a;S)}. See [28, 2, 46] for details.

As shown in [28],F' P L expresses a proper subset of the
gueries inP. Datalog" relates tof' P L as follows.

Theorem 6.3 ([29]) Datalog™ = FPL™(3), i.e., coincides

we shall spend a word about how input graphs are usuallyyith the fragment off PL having negation restricted to

represented as binary strings. A gragh G) is encoded as
binary stringenc(U, G) of length|U|?. If G(i, 5) is true for
i,7 € U =[0,n—1], then bit numbefxn + j of enc(U, G)
is 1, otherwise this bit i$.

The bit positions oknc(U, G) are exactly the integers
from 0 to n2 — 1. These integers are represented by all
k-tuples(0¥—2, z, y) such that:,y € U. Moreover, the bit-
positionint((0¥~2 z,y)) of enc(U,G) is 1 iff G(x,y) is
true in the input database afiedtherwise.

The above initialization rules can therefore be translated

into the datalog rules

CCy(0%,0"2 z,y) « G(z,y)
CCo(0%, 082, 2, y) + —~G(z,y)

Intuitively, the first rule says that if7(x, y) is true, then
at time point0 = int(0*), bit numberint({0*~2, z,y)) of
the worktape is 1 it7(z, y) is true. The second rule states
that the same bit is false @& (z,y) is false. Note that the
second rule applies negation to an input predicates is
the only rule in the entire datalogprogram using negatian
Clearly, these two rules simulate that at time pdinthe
cellscy,. .., c,2_1 contain precisely the stringnc(U, G).

The other initialization rules described in Section 3.1 are
also easily translated into appropriate datalog rules.ulset
now see how the other rules are translated into datalog.

From the linear order given b§ucc(x, y), First(x), and

database relations and only existential quantifiers.

Theorem 6.4 ([84]; implicit in [36]) Stratified datalogC
FPL.

The previous theorem is not obvious. In fact, for some
time coincidence of the two languages was assumed, based
on [29]. The non-recursive fragment of datalog coincides
with well-known database query languages.

Theorem 6.5 (cf. [2]) Non-recursive datalog = relational
algebra = SQL = relational calculus.

Unstratified negation yields higher expressive power.

Theorem 6.6 ([124];[3], using [71]) Datalog under WFS
= FPL; FPL = datalog under INFS.

As recently shown, the previous result holds also for total
WEFS (i.e., the well-founded model is always total) [61].

On ordered databases, Theorem 6.2 and the theorems in
Section 4 imply

Theorem 6.7 On ordered databases, stratified datalog,
datalog under INFS, and datalog under WFS captere

Syntactical restrictions allow to capture classes within

Last(x), itis easy to define by datalog clauses a linear order P. Let datalog (1) be the fragment of dataldgwhere each

<k on k-tuplesSucc® (x,y), First"(x), Last"(x) (see the
proof of Theorem 3.5), by usin§ucc' = Suce, First'
First and Last' = Last.

13

rule has most one nondatabase predicate in the body, and let
datalog (1, d) be the fragment of dataldd1) where each
predicate occurs in at most one rule head.
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Theorem 6.8 ([67, 128])On ordered databases, data- s and¢. The unification problem is the decision problem:
log™ (1) capturesNL and datalog (1, d) capturesL. given termss andt, are they unifiable?
) o o Robinson described in [113] an algorithm that solves this
Due to inherent .nondetermlmsm, stable semantics is problem and, if the answer is positive, computes a most gen-
much more expressive. eral unifier of given two terms. His algorithm had exponen-

Theorem 6.9 ([119]) Datalog under SMS captures-NP. tial tme and space complexny mainly beca.use of the repres-
entation of terms by strings of symbols. Using better repres

Note that for this result an order on the input database is €ntations (for example, by directed acyclic graphs), Robin
not needed. Informally, in each stable model such an order-SOn’s algorithmwas improved to linear time algorithms (e.g
ing can be guessed and checked by the program. By Fagin'§101' 110)).

Theorem [58], this implies that datalog under SMS is equi-
valent to the existential fragment of second-order logierov ~ Theorem 7.1 ([44, 131, 45])The unification problem i¥-
finite structures. complete under logspace reductions.

Theorem 6.10 ([3]) On ordered databases, datalog under  P-hardness of the unification problem was proved by re-
NINFS capture®SPACE ductions from some versions of the circuit value problem in
[44, 131, 45]. (Article [91] stated that unifiability is com-

Here ordering is needed. An interesting result in this oo i coNL, however, [44] gives a counterexample to the
context, formulated in terms of datalog, is the following [3 proofin [91].)

datalog under INFS = datalog on NINE® arbitrary finite
databasesf and only if P=PSPACE While the “only if”
direction is obvious, the proof of the “if” direction is in-
volved. It is one of the rare examples that translates open
relationships between deterministic complexity clasaé&s i
corresponding relationships between query languages.

Finally, we briefly address the expressive power of dis-
junctive logic programs and full logic programs. In the
latter case, the input databases are arbitrary (not negessa
recursive) relations on the genuine (infinite) Herbrand uni
verse of the program.

Also, many quadratic time and almost linear time uni-
fication algorithms have been proposed because these al-
gorithms are often more suitable for applications and gen-
eralizations (see a survey of main unification algorithms
in [12]). Here we mention only Martelli and Montanari's
algorithm [102] based on ideas going back to famous
Herbrand’s work [73]. Modifications of this algorithm are
widely used for unification in equational theories and re-
writing systems. The time complexity of Martelli and
Montanari’s algorithm isO(nA~t(n)) where A~! is a
function inverse to Ackermann’s function (thud,!(n)

Theorem 6.11 ([54, 55])Disjunctive datalog under SMS ~ 9rows very slowly).

capturesI1’.

8. Logic programming with equalit
Theorem 6.12 ([119, 51])Full LP under WFS, full LP un- gic prog g q y

der SMS, and full DLP under SMS all exprd$s. . o
The relational model of data deals with simple values,

For further expressiveness results, see e.g. [119, 114namely tuples consisting of atomic components. Vari-
115, 57]. In particular, further classes of the polynomial ous generalizations and formalisms have been proposed to
hierarchy can be captured by variants of stable modelshandle more complex values like nested tuples, tuples of
[115, 114, 57, 23] as well as through modular logic pro- sets, etc. [1]. Most of these formalisms can be expressed in
gramming [56]. terms of LP with equality [62, 63, 74, 72, 39] and constraint

logic programming considered in Section 9.

7. Unification and its complexity
8.1. Equational theories

What is the complexity of query answering for very
simple logic programs consisting of one fact? This prob- Let £ be a language containing the equality predicate
lem leads us to the problem of solving equations over terms,=. By anequationover £ we mean an atom = t where
known as theunification problem. Unification lies in the s andt are terms inL. An equational theoryE over £
very heart of implementations of LP and automated reason-is a set of equations closed under the logical consequence
ing systems. relation, i.e. a set satisfying the following condition8: £

Atoms or terms; andt are calledunifiableif there exists contains the equation = z; (ii) if E containss = ¢ then
a substitution? that makes them equal, i.e. the termbs E containst = s; (iii) if E containsr = s ands = t then
andtd coincide; such a substitutiohis called aunifier of E containsr = t; (iv) if E containss; = t1,...,8, = t,
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thenE containsf(s1,...,s,) = f(t1,...,t,) for eachn- ing equation systems can be viewed as a resultFn
ary function symboff € £; and (v) if E containss = ¢ then unification (solving equations is a traditional subject bf a
E containsst) = t1d for all substitutionsy. mathematics). Therefore, we restrict this survey to only fe
The syntax ofogic programs over an equational theory cases closely connected with LP. The general theor-of
E coincides with that of ordinary LP. Their semantics is unification may be found e.g. in [12].
defined as a generalization of the semantics of LP so that Let E be an equational theory ovérand- be a binary
terms are identified if they are equalin function symbol inZ (written in the infix form). We call an
associativesymbol if E contains the equatian (y-z) = (z-
y)-z, wherez, y andz are variables. Similarly,is called an
AC-symbo(an abbreviation for an associative-commutative
symbol) if- is associative and, in additioR, containse-y =
y-z. If - is an AC-symbol and’ containse-z = z, we call-
anACI-symbol 7 stands for idempotence). Alsois called

Example 7 We demonstrate logic programs with equality
by a logic program processing finite sets. Finite sets are
a typical example of complex values handled in databases
We represent finite sets by ground terms as follows: (i) the
constant{} denotes the empty set, (i) if represents a set

andt is a ground term thefi | s} represents the st} Us an AC1-symbolor anACI1-symbol if - is an AC-symbol

(where{t} ands need not be disjoint). However the equal- (an ACI-symbol respectively) an#l contains the equation
ity on sets is defined not as identity of terms but as equality - | _ . \\here 1 is a constant belongingo

in the equational theory in which terms are considered to be’

equal if and only if they represent equal sets (we omit the Theorem 8.1 ([96, 11, 17, 86]Let E be an equational

axiomatization of this theory). theory defining a function symboln £ as an associative
Consider a very simple program that checks whether two sympol @ contains all logical consequencesof(y - z) =

giver! sets have a non-empty intersection. This program . . 4) . » and no other equations). The following upper

consists of one fact and lower bounds on the complexity of tReunification
non_empty_intersection({X | Y1}, {X | Ya}) « . problem hold: (i) this problem is in REXPTIME , (ii) this

problem isNP-hard.

For example, to check that the setl, 3,5} and

{4,1,7} have a common member, we ask the query Basically, all algorithms for unification under associativ

non_empty_intersection({1,3,5},{4,1,7}). The answer ity are based on Makanin’s algorithm for word equations

will be positive. Indeed, the following system of equations [96]. The 3NEXPTIME upper bound is obtained in [86].

The following theorem characterizes other popular kinds

{X I} ={1,3,5}, {X [ Vo} = {4,1,7} of equational theories.

has solutions in the equational theory of sets, for example
X=1,Y ={3,5}, Y. = {7,4,1}.

Note that if we represent sets by lists in plain LP without
equality, any encoding afon_empty_intersection will re-
quire recursion.

Theorem 8.2 ([82, 83])Let E be an equational theory de-

fining some symbols as AC-symbols or ACI-symbols or

AC1-symbol or ACI1-symbols (there can be one or more of

these kinds of symbols). The thedtyis assumed to con-

tain no other equations. Then the-unification problem is
The complexity of logic programs ovef depends on  NP-complete.

the complexity of solving systems of term equationsFin

The problem of whether a system of term equations is solv-8.3. Complexity of non-recursive logic program-

able in an equational theo® is known as the problem of ming with equality
simultaneoudz-unification
A substitution is called anF-unifier of termss andt if In the case of ordinary unification, there is a simple way

the equation) = 17 is a logical consequence of the theory - to reduce solvability of finite systems of equations to solv-
E. By the E-unification problemwe mean the problem of  ability of single equations. However, these two kinds of
whether there exists af-unifier of two given terms. Or-  solvability are not equivalent for some theories: thereesi

dinary unificatiqn can be yiewed a&gnification Wh_ereE an equational theorf such that the solvability problem for
contains only trivial equations= ¢. Itis natural to thinkof ~ one equation is decidable, while solvability for systems is
an E-unifier of s andt as asolutionto the equation = ¢ in undecidable [106].

the theoryE. SimultaneousE-unification determines decidability of

non-recursive LP oveF.
8.2. Complexity of E-unification
Theorem 8.3 ([38]) Let E be an equational theory. Non-
It is practically impossible to overview all results on the recursive LP ovelF is decidable if and only if the problem
complexity of E-unification because any result on solv- of simultaneoug-unification is decidable.

15
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An equational theory is calledNP-solvableif the prob-
lem of solvability of equation systems His in NP. For ex-

the setN of natural numbers. This structure is denoted by
(N, =,s,0). Other examples of structures are obtained by

ample, the equational theory of finite sets mentioned above replacingN by the setsZ (the integers)() (the rational
the equational theory of bags (i.e. finite multisets) and the numbers),R (the reals) oiC' (the complex numbers). Be-

equational theory of trees (containing only equatibast)
areNP-solvable [38].

Theorem 8.4 ([37, 38])Non-recursive LP over arNP-
solvable equational theork is in NEXPTIME . Moreover,

if £ is a theory of trees, or bags, or finite sets, or any
combination of them, then non-recursive LP o¥gis also
NEXPTIME -complete.

9. Constraint logic programming

Informally, constraint logic programming (CLP) extends

low we denote structures in a similar way, keeping in mind
the standard interpretation of arithmetic function synshol
number sets. The symbalsand/ stand for multiplication
and division respectively. We ugez to denote unary func-
tions of multiplication by particular numbers (of the casre
ponding domain)z™ is used similarly. All structures under
consideration are assumed to contain the equality symbol.

Let S be a structure. An atona(ty,...,t;) where
t1,...,t; are terms in the language 6fis called acon-
straint. By aconstraint logic program ovef we mean a
finite set of rules

LP by involving additional conditions on terms. These con- Px) eyl @1 (X1), - g (Xn)
ditions are expressed lzpnstraintsj.e. equations, disequa- where are constraints are pre
tions, inequations etc. over terms. The semantics of such Gy -0 Cm oo, -0 n P

constraints is predefined and does not depend on logic pro

grams.

Example 8 We illustrate CLP by the standard example.
Suppose that we would like to solve the following puzzle:

S E N D
M O R E
M O N E Y

+

All these letters are variables ranging over decimal digits
0,1,...,9. As usual, different letters denote different di-
gits andS, M # 0. This puzzle can be solved by a con-
straint logic program over the domain of integéfs =, #
,<,+,x,0,1,...). Informally, this program can be written
as follows.

find(S,E,N,D, M,0,R,E, M,O,N,E,Y) +
1<S<9,...,0<Y <09,
S4E, ..., R#Y,
1000- S +100-E+10- N + D+
1000- M +100-O+10-R+ E =
10000 - M +1000- O +100- N + 10- E+ Y

The queryfind(S,E,N,D, M,O,R,E, M,O,N,E,Y)
will be answered by the only solution

_|_

O = O
DO Ot
Ul oco O
N Ot 3

1

A structureis defined by an interpretatioh of a lan-
guageL in a nonempty sefD. For example, we shall

dicate symbols not occurring in the language %f and
X,X1,...,X, are lists of variables. Semantics of CLP is
defined as a natural generalization of semantics of LP (e.g.
[79]). If S contains function symbols interpreted as tree
constructors (i.e. equality of corresponding terms isrinte
preted as ordinary unification) then CLP ov&is an exten-
sion of LP. Otherwise, CLP ove$ can be regarded as an
extension of Datalog by constraints.

9.1. Complexity of constraint logic programming

There are two sources of complexity in CLP: complex-
ity of solving systems of constraints and complexity com-
ing from the LP scheme. However, interaction of these
two components can lead to complexity much higher than
merely the sum of their complexities. For example, Data-
log (which isDEXPTIME -complete) with linear arithmetic
constraints (whose satisfiability problem is NP for in-
tegers and irP for rational numbers and reals) is undecid-
able.

Theorem 9.1 ([35]) CLP over(N, =, s,0) is r.e.-complete.
The same holds for any &f, (), R andC instead of/N.

The proof uses the fact that CLP ovey, =, S,0,1) al-
lows one to define addition and multiplication in terms of
successor. Thus, diophantine equations can be expressed in
this fragment of CLP.

On the other hand, simpler constraints, namely con-
straints over ordered infinite domains (of some particular
kind), do not increase the complexity of Datalog.

consider the structure defined by the standard interpreta-Theorem 9.2 ([34]) CLP over(Z,=,<,0,£1,+2,...) is

tion of the language consisting of the constant 0, the suc-

cessor function symbal and the equality predicate in

16

DEXPTIME -complete. The same holds for any(@br R
instead of7.

www.manaraa.com



Decidable fragments of CLP over more complex struc-
tures are obtained by restrictions imposed on constraint lo
gic programs. For example, we considec@nservative
CLP in which rules satisfy the restriction: all variables oc-
curring in the body occur in the head.

Theorem 9.3 ([35]) Conservative CLP isDEXPTIME -
complete over any of the following structures:

(@,=<,<,+,—,n-2,0,1,...), i.e. linear inequa-
tions over the rational numbers;

(R,=,<,<,+,—,n-z,0,1,...), i.e. linear inequa-
tions over the reals;

(R,=,<,<,+,—,%,/,2™0,1,...), i.e. polynomial
inequations over the reals;

C,=,+,—,%,/,2",0,1,...), i.e. polynomial equa-
tions over the complex numbers.

The proof is based on the known results on the com-
plexity of algorithms for the corresponding algebraic stru
tures [25, 112, 69, 75]. If we allow non-ground quer-
ies, DEXPTIME -completeness should be replaced by
NEXPTIME -completeness.

10. Expressive power of logic programming-
with complex values

The expressive power of datalog queries is defined in
terms of input and output databases, i.e. finite sets ofsuple
To extend the notion of expressive power to logic program-
ming with complex values, we have to define what we mean
by an input. For example, in the case of plain logic pro-
gramming, an input may be a finite set of ground terms, i.e.
a finite set of trees. In the case of logic programming with

sets, an input may be a set whose elements may be sets too 71

and so on.
Various models and languages for dealing with complex

values in databases have been proposed. The comparat- 8]

ive expressive power of such formalisms is studied, for ex-
ample, in [1]. This paper introduces a model for restricted

combinations of tuples and sets and several corresponding

guery languages, including the algebraic and logic program

ming ones. It is proved that all these languages define the

same class of queries.

The absolute expressive power of such languages (in
terms of complexity classes) is studied for example in
[117, 92, 93] which, in particular, show how the express-
ive power depends on the way of representing complex
values. For a natural representation of hereditarily finite
sets by graphs, there is a logical query language (called
Bounded Set Theory) that captuf@sSome other versions
of Bounded Set Theory are shown to capturandNL.

17

Other interesting results on the expressive power of dif-
ferent forms of LP with constraints can be found e.g. in
[33, 81, 18, 126].

Unlike research on the expressive power of datalog, there
is no mainstream in research on the expressive power of
LP with complex values. The latter research yielded so
far a number of ad hoc results and approaches. This can
be explained by several reasons. One reason is that differ-
ent kinds of complex values require different computationa
models. Another reason is that the same kind of complex
values admits many different definitions of the input and
output.

Extension of declarative query languages by complex
values is one of the main problems of database theory and
practice. More research is required to develop unifying
paradigms for understanding their expressive power.
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